Muons in Air Showers at the Pierre Auger Observatory

M. Unger¹ for the Pierre Auger Collaboration²

¹ KIT & NYU

² Av. San Martin Norte 304, 5613 Malargüe, Argentina

http://www.auger.org/archive/authors_2014_09.html

Outline

published:

PHYSICAL REVIEW D 90, 012012 (2014)

Muons in air showers at the Pierre Auger Observatory: Measurement of atmospheric production depth

accepted by PRD (selected for Editors' Suggestion):

Muons in air showers at the Pierre Auger Observatory: Mean number in highly inclined events

preliminary analyses (ICRC13):

Measurement of the muon signal using the temporal and spectral structure of the signals in surface detectors of the Pierre Auger Observatory

BALÁZS KÉGL¹, FOR THE PIERRE AUGER COLLABORATION²

The muon content of hybrid events recorded at the Pierre Auger Observatory

GLENNYS R. FARRAR¹ FOR THE PIERRE AUGER COLLABORATION²

Muons in air showers

R. Ulrich, APS 2010

- muons are produced late in the shower cascade
 - ightarrow number of generations \sim 6 at 10¹⁹ eV
 - $\rightarrow\,$ amplified sensitivity to hadronic interactions
- X_{max} is dominated by first interaction
- disentangle particle physics and composition using hybrid events?

Measuring muons with the Auger SD

a) shielding of EM component:

b) time structure:

Muon studies with inclined hybrid events (62°-80°)

event 201114505353, $\theta = 75.6^{\circ}$, E = 15.5 EeV

Reconstruction of inclined events (62°-80°)

contribution from γ, e^{\pm} :

Pierre Auger Coll., JCAP 1408 (2014) 019

muon density templates:

Reconstruction of inclined events (62°-80°)

Rescaling of density-template to match data:

 $\rho_{\mu}(\text{data}) = N_{19} \cdot \rho_{\mu}(\text{QGSJETII-03}, p, E = 10^{19} \text{ eV}, \theta)$

Example: $\theta = 71^{\circ}$, E = 54.6 EeV, $N_{19} = 9.2$

Cross-checks of reconstruction

reconstruction bias:

constant intensity?

correct average bias: $N_{19} \rightarrow R_{\mu}$

 R_{μ} vs. $E_{\rm FD}$

$\langle \textit{\textit{R}}_{\mu} angle / \textit{\textit{E}}_{\mathrm{FD}}$ vs. $\textit{\textit{E}}_{\mathrm{FD}}$

$\langle \textit{\textit{R}}_{\mu} \rangle / \textit{\textit{E}}_{\text{FD}}$ vs. $\textit{\textit{E}}_{\text{FD}}$

N.B.: $R_{\mu} = 1 \leftrightarrow N_{\mu} = 1.455 \times 10^7$

N.B.: $R_{\mu} = 1 \leftrightarrow N_{\mu} = 1.455 \times 10^7$

Muon scale vs. X_{max} (FD)

Muon production depth: Reconstruction

Muon production depth: Performance

$X_{\rm max}^{\mu}$ vs. energy

 $d\langle X_{max}^{\mu} \rangle / d \lg E = -25 \pm 22 \text{ (stat.)} \pm 21 \text{ (syst.)} \text{ g/cm}^2/\text{decade}$

proton: 35.9 \pm 1.2, iron: 48.0 \pm 1.2 $g/cm^2/decade$

X_{\max}^{μ} vs. energy

 $d\langle X^{\mu}_{\rm max} \rangle / d \log E = -25 \pm 22 \, ({
m stat.}) \pm 21 \, ({
m syst.}) \, {
m g/cm^2/decade}$

proton: 35.9 \pm 1.2, iron: 48.0 \pm 1.2 $g/cm^2/decade$

Comparison of In*A* from X_{max}^{μ} and X_{max}

InA(FD) from JCAP 1302 (2013) 026

Retune of EPOS-LHC possible within uncertainty of π + air interactions (not measured at LHC!) (see talk by R.Engel)

Hybrid events, data vs. simulation

example:

Hybrid events, data vs. simulation, prelim. results

Combined fit of energy scale R_E and muon rescaling R_{μ}

model	R_E	R_{μ}
QGSJETII-04, p	$1.09 \pm 0.08 \pm 0.09$	$1.59 \pm 0.17 \pm 0.09$
QGSJETII-04, mixed	$1.00 \pm 0.08 \pm 0.11$	$1.59 \pm 0.18 \pm 0.11$
EPOS-LHC, p	$1.04 \pm 0.08 \pm 0.08$	$1.45 \pm 0.16 \pm 0.08$
EPOS-LHC, mixed	$1.01 \pm 0.07 \pm 0.08$	$1.30 \pm 0.13 \pm 0.09$

Analysis of SD time traces

use different features to estimate muon fraction

	μ	e^{\pm}, γ
arrival:	early	late
signal:	large	small
structure:	peaky	smooth

- smoothing method (low-pass filter)
- multivariate method ('spike fraction', moment ratio)

Analysis of SD time traces, preliminary results

Summary

- measurements of muons in air shower with the Auger surface detector
- use X_{max} measurement for tests of hadronic interactions beyond "observable between proton and iron?"
- each of the finalized studies is individually in marginal agreement with some model
- the ensemble of results in greater tension with current models because no model is in marginal agreement with *all* studies

	EPOS-LHC	QGSJETII-04
$\langle \ln R_{\mu} \rangle$ vs. $\langle X_{\rm max} \rangle$	-1.4 σ	-1.8 σ
elongation rate (ln R_{μ} vs. $\langle X_{max} \rangle$)	-1.3 σ	-1.4 σ
$X^{\mu}_{ m max}$ vs. $\langle X_{ m max} angle$	incompatible	compatible
$\langle X_{ m max} angle$ vs. $\sigma(X_{ m max})^{\dagger}$	ok	2 σ

(note: σ dominated by systematics)

- analyses in progress will provide additional discriminating power
- improved muon measurements with upgraded detector!

[†] see talk by V. de Souza