

TA X_{max} and $\sigma(p-air)$

Yoshiki Tsunesada

Tokyo Institute of Technology for The Telescope Array Collaboration

UHECR2014, Springdale, UT US, Oct 15 2014

- Stereo
- FD/SD Hybrid

BR/LR/MD Stereo Reconstruction

- Use X_{max}: most efficient shower parameter to determine primary nuclear type
- Accuracy in geometry determination is crucial
 - Use FD data individually triggered by 2>= detectors: Stereo data
 - Each station defines a shower detector plane (SDP)
 - Intersection of the two SDPs well determines shower geometry
- Nov 2007 ~ Mar 2014: 6.3-year data

BR/LR Stereo Xmax

物理学会秋季大会 2014/9/20@佐賀大学

神奈川大学 多米田裕一郎

Acceptance Bias

<X_{max}> vs logE

TA BR/LR Stereo Preliminary

BR/LR/MD Stereo Events

- Now stereo reconstruction for all the 3 FD combinations possible
- Shower profiles calculated using the stereo geometry
 - Require successful reconstruction at both sites
 - Use BR/LR profiles for triple stereo events even if the MD SDP used
- (Unweighted) mean X_{max}

X_{max} **Distributions**

— Proton

MC: QGSJET-I

<X_{max}> vs logE

TA BR/LR/MD Stereo Preliminary

MD/SD *Hybrid* **Reconstruction**

- Independently triggered FD and SD data, time matching, use all SD information (FD SDP + FD timing + SD shower core) —> MD Hybrid
- Independently triggered FD and SD data, time matching, use only single SD information (FD SDP + FD timing + SD timing/position) - in progress
- Hybrid trigger: External SD trigger by FD, use only single SD data, efficient in lower energies, implemented in late 2009 - in progress

Reconstruction

- MD-FD (refurbished HiRes-I detectors) + SD (>=3)
- SDP by FD + SD shower core
- 5-year data

MD/SD Hybrid Xmax

Events: 843

[gm/cm²]

max

<X_{max}> vs logE

- Low-energy flat profile events are of poor X_{max} resolution (with rather good χ^2)
- A machine-learning approach: Pattern recognition to select events with a rise and fall using the simplest templates: triangle.

<X_{max}> vs logE

MD/SD Hybrid, 5-year, with geometrical + pattern recognition cuts

<X_{max}> vs logE

p-Air Cross Section

σ(p-air): Data

- MD/SD hybrid, 5-year
 - Geometrical + pattern recognition cuts
 - $\log E = 18.3 19.3$, $<\log E > = 18.7$
 - 439 events
 - X_{max} resolution: 23.5 g/cm²

σ(p-air) from MD Hybrid

(Average of σ (QGSJET-I) and σ (QGSJET-II)

Conclusions

TA X_{max} measurements

- BR/LR/MD stereo reconstruction: 6.3-year data
- MD hybrid reconstruction: 5-year data
 - Paper submitted to APP

Frace Frace

- Statistics is low in higher energies
- First result of the p-air cross section at 10^{18.7}eV with MD hybrid

 $\sigma_{p-air} = 536.2 \pm 33.4 (stat) \pm 55.4 (sys) [mb]$

(lambda rec - lambda model) vs. the fraction by which cross section is modified.

> advantage of MCS at high values of f19: 50% or higher also at -20% or lower. Does this still applies at 5%,10%..etc where it is more realistically the case

Comparison at 5,10,15, and 20% modification level

qgsjet II4

qgsjetII Model Exchange using modcs

