TA $X_{\text {max }}$ and $\sigma(p$-air $)$

Yoshiki Tsunesada
Tokyo Institute of Technology for The Telescope Array Collaboration

TA Detectors

-f3 FD stations
-Black Rock

- Long Ridge
- Middle Drum
-507 SDs
- C. $\mathrm{X}_{\text {max }}$ Analyses
- Stereo
- FD/SD Hybrid

BR/LR/MD Stereo Reconstruction

I. Use $X_{\text {max }}$: most efficient shower parameter to determine primary nuclear type
\& Accuracy in geometry determination is crucial

- Use FD data individually triggered by 2>= detectors: Stereo data
- Each station defines a shower detector plane (SDP)
- Intersection of the two SDPs well determines shower geometry
\% Nov 2007 ~ Mar 2014: 6.3-year data

BR/LR Stereo $X_{\text {max }}$

BR/LR stereo

Nov 2007 ~ Mar 2014: 6.3-year data

$X_{\text {max }}$ Distributions TA BR/LR Stereo Preliminary

MC: QGSJET-II-03

$X_{\max }$ Distributions TA BR/LR Stereo Preliminary
 MC: QGSJET-II-03

Acceptance Bias

Acceptance Bias
After trigger/reconstruction/selection

$<X_{\text {max }}>$ vs $\log E$

TA BR/LR Stereo Preliminary

BR/LR/MD Stereo Events

- Now stereo reconstruction for all the 3 FD combinations possible
- Shower profiles calculated using the stereo geometry
- Require successful reconstruction at both sites
- Use BR/LR profiles for triple stereo events even if the MD SDP used
- (Unweighted) mean $X_{\text {max }}$

$X_{\text {max }}$ Distributions

- Proton

- Iron

TA BR/LR/MD Stereo Preliminary

MC: QGSJET-I

p^{+}K-S: 0.459
$\mathrm{p}^{+} \mathrm{K}-\mathrm{S}: 0.597$

$<X_{\text {max }}>$ vs $\log E$

TA BR/LR/MD Stereo Preliminary

MD/SD Hybrid Reconstruction

- Independently triggered FD and SD data, time matching, use all SD information (FD SDP + FD timing + SD shower core) — MD Hybrid
- Independently triggered FD and SD data, time matching, use only single SD information (FD SDP + FD timing + SD timing/position) - in progress
- Hybrid trigger: External SD trigger by FD, use only single SD data, efficient in lower energies, implemented in late 2009 - in progress

MD/SD Hybrid Reconstruction

- MD-FD (refurbished HiRes-I detectors) + SD (>=3)
- SDP by FD + SD shower core
- 5-year data

MD/SD Hybrid $X_{\text {max }}$

$<X_{\text {max }}>$ vs $\log E$

Pattern Recognitions for Shower Profiles

- Motivation: improve $X_{\max }$ resolution and its energy dependence
- Use only events with a clear rise and fall in FoV
- Low-energy flat profile events are of poor $X_{\max }$ resolution (with rather good X^{2})
- A machine-learning approach: Pattern recognition to select events with a rise and fall using the simplest templates: triangle.

$\mathrm{X}_{\max }$ Resolution after Geometrical and Pattern Recognition Cuts

Data/MC Comparisons after Geometrical and Pattern Recognition Cuts

MC: QGSJET-II-03

$\mathrm{X}_{\max }$ Distributions

MD/SD Hybrid, 5-year, with geometrical + pattern recognition cuts

MC: QGSJET-II-03

$<X_{\max }>$ vs $\log E$

MD/SD Hybrid, 5-year, with geometrical + pattern recognition cuts

$<X_{\text {max }}>$ vs $\log E$

p-Air Cross Section

Measuring p-air cross section with FD data

$\sigma(p-a i r):$ Data

- MD/SD hybrid, 5-year
- Geometrical + pattern recognition cuts
- $\log \mathrm{E}=18.3-\mathrm{I} 9.3,<\log \mathrm{E}>=18.7$
- 439 events
- $X_{\max }$ resolution: $23.5 \mathrm{~g} / \mathrm{cm}^{2}$

$\sigma(p-a i r)$ from MD Hybrid (Average of $\sigma($ QGSJET-I) and $\sigma($ QGSJET-II)

Systematic errors:

- Different primary contamination $\sim 10 \%$: 30 mb
- Detector bias: 33mb
- Model dependence: 33mb

$$
\sigma_{\mathrm{p}-\mathrm{air}}=536.2 \pm 33.4(\mathrm{stat}) \pm 55.4(\mathrm{sys})[\mathrm{mb}]
$$

Conclusions

TA $X_{\text {max }}$ measurements

- BR/LR/MD stereo reconstruction: 6.3-year data
- MD hybrid reconstruction: 5-year data
- Paper submitted to APP

TA composition results indicate light composition below $10^{19} \mathrm{eV}$

- Statistics is low in higher energies
- First result of the p -air cross section at $10^{18.7} \mathrm{eV}$ with

MD hybrid

$$
\sigma_{\mathrm{p}-\mathrm{air}}=536.2 \pm 33.4(\mathrm{stat}) \pm 55.4(\mathrm{sys})[\mathrm{mb}]
$$

Convolution vs. MCS
 qgsjetll Model Exchange using modcs

(lambda rec - lambda model) vs. the fraction by which cross section is modified.
advantage of MCS at high values of f19: 50% or higher also at -20\% or lower. Does this still applies at 5\%,10\%..etc where it is more realistically the case

Comparison at 5,10,15, and 20\% modification level

qgsjet II4

