Primary CR Energy Spectrum and Mass Composition by the Data of Tunka-133 Array

by the Tunka-133 Collaboration

Tunka-HiSCORE: First results on all-particle spectrum

by the Tunka-HiSCORE Collaboration

combined talk - presenter: Frank G. Schröder (KIT)

Tunka Valley

Republic of Buryatia

150 km from Irkutsk

50 km from the shore of lake Baikal

Experiments in the Tunka Valley

Current Status (2013-2014):

1. Tunka-133 175 detectors single PMT of Ø 20 cm

2. Tunka-HiSCORE 9 stations 4 PMT with Winston cones

3. Tunka-Rex 25 radio antennas

Under Construction and Deployment:

- 1. Scintillation detectors of electrons and muons (from EAS-TOP and KASCADE-Grande) 19 stations, total area for muons: 100 m²
- 2. Tunka-HiSCORE + 24 stations (2014)
- 3. Net of IACT 5 telescopes with 10 m² mirror area, 8° FoV
- 4. New muon scintillation detectors total area: 2000 m²
- 5. Tunka-Rex + 20 radio antennas

175 optical detectors EMI 9350 and HAMAMATSU Ø 20 cm

Towards High Energy Gamma-Rays Astronomy in Tunka Valley

TAIGA — Tunka Advanced Instrument for cosmic rays and Gamma Astronomy

Array design concept

•Non imaging wide-angle optical stations (HiSCORE type)

•Net of imaging telescopes with mirrors of 10 m² area.

Array of muon detectors
10² → 2 10³ m² area.

Single detector readout:

Fitting a pulse and measuring parameters:

Q=
$$c \cdot S_{pulse}$$
, A_{max} , t_i , $\tau_{eff} = S/A/1.24$

anode:

dynode:

Primary nucleus E_0 , A? $E_0 \sim Q(200)$ Cherenkov light flux θ, φ **X**_{max} (model independent): $\mathbf{X}_{\mathsf{max}}$ Two methods: **ADF** steepness (LDF replaced now ADF) Pulse width (FWHM replaced now by τ_{eff}) 2 X_0

Energy reconstruction

$$E = A (Q200)^g$$

Density of Cherenkov light at core distance of 200 m

For $10^{16} - 10^{18}$ eV (CORSIKA):

$$g = 0.94 \pm 0.01$$

Experimental data

~ 270 000 events with
$$E_0 > 6.10^{15} \text{ eV} - 100\%$$
 efficiency
 ~ 99 000 events $E_0 > 10^{16} \text{ eV}$
 ~ 4000 events $E_0 > 5.10^{16} \text{ eV}$
 ~ 983 events $E_0 > 10^{17} \text{ eV}$

L:
$$R_{center} < 800 \text{ m}$$
:

~ 12400 events $E_0 > 5 \cdot 10^{16} \text{ eV}$ ~ 3000 events $E_0 > 10^{17} \text{ eV}$

Energy spectrum: power law fitting

One can see two sharp features at the energies:

~2·10¹⁶ eV (first announced by KASCADE-Grande in 2010)

and ~3·10¹⁷ eV (similar to that, announced by Yakutsk and Fly's Eye in 90th)

The power law index at $E_0>10^{17}$ is similar to that obtained by the giant experiments: TA, HiRes, Auger.

Combined spectrum: comparison with some other works

Agreement with KASCADE-Grande

Agreement with old Fly's Eye, HiRes and TA spectra.

Combined spectrum: comparison with some other works

Agreement with KASCADE-Grande and Ice-TOP (2013)

All the spectra coincide with Tunka-133, if energy of KASCADE-Grande is increased by 3% and energy of Ice-TOP is decreased by 3%.

This shift is less than announced experimental accuracy.

Tunka-HiSCORE: All particle energy spectrum.

PRELIMINARY

m_*sec_'*ster_'*eV''

84 h during 13 clean moonless nights in February and March of 2014

~ 145 000 events with $E_0 > 3.10^{14} \text{ eV}$ (100% efficiency)

 \sim 21 000 events E₀ > 10¹⁵ eV

 \sim 200 events E₀ > 10¹⁶ eV

Tunka-HiSCORE next winter (2014-2015) – 33 stations

Decreasing of a threshold for γ to ~40 TeV

All the stations will be tilted for 30° to the South for observation of Crab Nebulae

About 10-30 γ-events from Crab are expected during 100 h of observation.

$\langle X_{max} \rangle vs. E_0$

Agreement with HiRes-MIA and Auger results at $10^{17} - 10^{18}$ eV

Tunka-133 experiment: mean <lnA> vs. E₀

Conclusions

1. The energy spectrum from 6.10¹⁵ eV to 10¹⁸ eV cannot be fitted with a single power law index:

$$\gamma = 3.25 \pm 0.01$$
 $5 \cdot 10^{15} \text{ eV} < E_0 < 2 \cdot 10^{16} \text{ eV}.$ $\gamma = 2.98 \pm 0.01$ $2 \cdot 10^{16} \text{ eV} < E_0 < 3 \cdot 10^{17} \text{ eV}.$ $\gamma = 3.35 \pm 0.11$ $E_0 > 3 \cdot 10^{17} \text{ eV}.$

- 2. Agreement with KASCADE-Grande and Ice-TOP within a shift of the energy scale of only 3-4%, agreement with TALE (TA Cherenkov).
- 3. The high energy tail does not contradict to the Fly's Eye, HiRes and TA spectra.
- 4. Tunka-HiSCORE prototype data can be used for the primary energy spectrum reconstruction in the knee energy range and before the knee. The spectrum is in agreement with Tibet and Hegra-AIROBICC results. Further steps to decrease the energy threshold are in progress.
- 5. Composition changes from light to heavy in the energy region $10^{16} 10^{17}$ eV and then back to light in the region $10^{17} 10^{18}$ eV.

Back up slides

EAS parameters accuracy: experimental estimations

Comparison of one the same shower parameters, measured by different arrays.