Auger anisotropy studies

E.M. Santos (University of São Paulo - USP) for the Pierre Auger Collaboration
Right Ascension modulation

Fourier expansion of RA distribution:

$$\Phi(\alpha) = a_0 + \sum_{n>0} a_n^c \cos n\alpha + \sum_{n>0} a_n^s \sin n\alpha.$$

First harmonic coefficients (equatorial dipole):

$$a_1^c = \frac{1}{N} \sum_{i=1}^{N} w_i \cos \alpha_i \quad a_1^s = \frac{1}{N} \sum_{i=1}^{N} w_i \sin \alpha_i$$

account for exposure modulations

$$\omega(t, \theta, \phi, S_{38^\circ}) = n_{\text{cell}}(t) \times a_{\text{cell}} \cos \theta \times \epsilon(S_{38^\circ}, \theta, \phi)$$

construction phase and station dead-times induce spurious small modulation in sidereal time

affected by weather

Astropart. Phys. 32 (2009) 89
Right Ascension modulation

$$r = \sqrt{(a_1^c)^2 + (a_1^s)^2}$$

quality cuts

- $\theta < 60$ degrees (1500 m array)
- $\theta < 55$ degrees (750 m array)
- hottest station surrounded by active hex.
- periods of detector instabilities removed

East-West method at low energies

$$\frac{dI}{dt} = \frac{E(t) - W(t)}{\delta t}$$

Phase prescription:

- Started on 25 June 2011
- Constancy of phase for $E < 1$ EeV with INFILL
- Transition at high energies
Spherical harmonics with partial sky coverage

\[\Phi(n) = \sum_{\ell \geq 0} \sum_{m = -\ell}^{\ell} a_{\ell m} Y_{\ell m}(n) \]

- Anisotropy encoded in the set of alms
- Dipole vector and quadrupole tensor of special interest

- Partial and non-uniform sky coverage mix different multipoles

\[b_{\ell m} = \int_{\Delta \Omega} d\Omega_n \tilde{\omega}(n, \Delta E) \Phi(n) Y_{\ell m}(n) \]

\[= \sum_{\ell' \geq 0} \sum_{m' = -\ell'}^{\ell'} a_{\ell m} b_{\ell' m'} \]

Mixing matrix

\[\bar{a}_{\ell m} = \sum_{\ell' = 0}^{\ell_{\text{max}}} \sum_{m' = -\ell'}^{\ell'} [K^{-1}_{\ell_{\text{max}}}]_{\ell m}^{\ell' m'} b_{\ell' m'} \]

True coefficients

- Multipole estimate is done truncating expansion at a max. value \(l_{\text{max}} \)
- Resolution degrades as \(\sim \exp(l_{\text{max}}) \) !!!

Pseudo-coefficients

JCAP02 (2008) 009
Spherical harmonics analysis

Pure dipole: \[\Phi(n) = \frac{\Phi_0}{4\pi} (1 + rd \cdot n) \]
Including the quadrupole: \(\Phi(n) = \frac{\Phi_0}{4\pi} (1 + r \mathbf{d} \cdot \mathbf{n} + \lambda_+ (q_+ \cdot \mathbf{n})^2 + \lambda_0 (q_0 \cdot \mathbf{n})^2 + \lambda_- (q_- \cdot \mathbf{n})^2) \)

\[\beta \equiv \frac{(\lambda_+ - \lambda_-)}{(2 + \lambda_+ + \lambda_-)} = \frac{\Phi_{\text{max}} - \Phi_{\text{min}}}{\Phi_{\text{max}} + \Phi_{\text{min}}} \]

Comparison with anisotropy expectations from stationary galactic sources on the disk

galactic magnetic field:
regular (arms+halo) +
turbulent (Kolmogorov spec.)
AGN correlation

Angular window 3.1°
Energy threshold 55 EeV
Dmax: 75 Mpc (redshift < 0.018)

29/69 events (up to Dec 2009)

21/55 (excluding exploratory scan)
AGN correlation

28/84 events (up to Jun 2011)
(33 ± 5)%
\[P = 6 \times 10^{-3} \]
Blind search for neutron excesses

Neutron average traveled distances @ EeV energies:

\[\frac{d_n}{\text{kpc}} = 9.2 \times \frac{E}{\text{EeV}} \]

➤ Nice view of the GC
➤ Above 2 EeV, detection volume would contain most of the galaxy

➤ Blind search over the whole FoV in 4 energy ranges:

1-2 EeV | 2-3 EeV | E>3 EeV | E>1 EeV

➤ isotropic expectations from shuffling of the data

➤ Target size tuned to the detector angular resolution to maximize sensitivity to point sources:

\[(S/N)_{\text{max}} \text{ for } \chi = 1.05\psi \text{ (top-hat)} \]

median AR in energy bin
Blind search for neutron excesses

Blind search for neutron excesses

No candidates for neutron sources in Auger FoV identified
Blind search for neutron excesses

Flux upper limits maps

$1 \leq E/\text{EeV} < 2$

$\chi = 1^\circ.36$

$2 \leq E/\text{EeV} < 3$

$\chi = 1^\circ.02$

$E \geq 1 \text{ EeV}$

$\chi = 1^\circ.23$

$E \geq 3 \text{ EeV}$

$\chi = 0^\circ.69$
Blind search for neutron excesses

Flux upper limits maps

1 ≤ E/EeV < 2

χ = 1°.36

2 ≤ E/EeV < 3

χ = 1°.02

E ≥ 1 EeV

χ = 1°.23

Neutron sources evading these limits:

➤ extragalactic
➤ transient
➤ emitting in jets
➤ optically thin to protons
➤ individually weak but densely distributed
Assuming deflections in the linear regime:

\[
\vec{\theta} = \vec{\theta}_s + \frac{Ze}{E} \int_0^L d\vec{l} \times \vec{B} \simeq \vec{\theta}_s + \frac{\nabla \cdot (\vec{\theta}_s)}{E}
\]

\[
\text{Cov}(x, 1/E) = \frac{1}{N} \sum_{i=1}^{N} (x_i - \langle x \rangle)(1/E_i - \langle 1/E \rangle)
\]

(u,w) system has maximal \(\mathbf{u} \times \mathbf{1}/E\) covariance

multiple defined by correlation coeff. \(C\) and width \(W\)

\(C_{\min}\) and \(W_{\max}\) chosen from simulations with extragal. sources and BSS-S gal. field
Multiplets

- E>20 EeV (1509 events)
- 5T5 + core inside active triangle
- AR<1 degree
- W_{max}=1.5 degree
- C_{min}=0.9
- At least one event with E>45 EeV

Fraction of isotropic skies with multiplets of at least 12 events: 6%
Summary

- First harmonic amplitudes marginally in agreement with isotropic expectation in a few energy bins above 1 EeV
- Non-random phases over a large energy range.
- Constraining upper limits on dipole and quadrupole amplitudes. Derived limits on galactic composition + magnetic fields
- No neutron excesses identified above 1 EeV
- No significant evidence for the existence of correlated multiplets in the data