LHCf and UHECR

Nobuyuki Sakurai Kobayashi-Maskawa Institute, Nagoya University

Outline

- Introduction
 - Difference b/w UHECR data and simulation results
 - Collider data and EAS observables
- LHCf experiment
 - Instruments
 - Results (π⁰, neutron, nuclear modification factor)
- Energy flux analysis using LHCf results
 - Modification of QGSJET-II-04
 - Results
- Summary & prospects

Difference b/w UHECR data and MC

- Muon deficit in MC (Auger)
- Secondary particle on the ground observed by TA is larger than the expected.

TA-SD is the thin (1.2cm) scintillator. →Most of the signal is due to EM component.

Muon surplus reported by Auger is one of the candidate of the source of this difference.

I consider the lateral distribution of EM component as a candidate too.

Difference b/w E(FD) and E(SD)

Air Shower study using collider

① Inelastic cross section

If large σ : rapid development If small σ : deep penetrating

② Forward energy spectrum

Softer \rightarrow shallow development Harder \rightarrow deep penetrating

(3) Inelasticity $k = 1 - \frac{E_{lead}}{E_{avail}}$

Large **k** (π^0 s carry more energy) \rightarrow rapid development

Small k (baryons carry more energy) \rightarrow deep penetrating

Very forward hadron energy flow & extensive air shower

Energy flow @ Elab = 10^18eV

Long. development @ Elab = 10^18eV

 Neutron energy flow @ high pseudorapidity region (η>12) increase
 → Larger Xmax

\sqrt{s} scaling of x_F and EAS

Large Hadron Collider (LHC)

p-p $\sqrt{s} = 0.9 \text{TeV} \rightarrow \text{E}_{\text{lab}} = 0.2 \text{PeV}$ 2009, 2010p-p $\sqrt{s} = 7 \text{TeV} \rightarrow \text{E}_{\text{lab}} = 26 \text{PeV}$ 2010 - 2011p-p $\sqrt{s} = 13 \text{TeV} \rightarrow \text{E}_{\text{lab}} = 90 \text{PeV}$ 2015 -p-p $\sqrt{s} = 2.76,8 \text{TeV}$ 2011Pb-Pb $\sqrt{S_{NN}} = 2.76 \text{TeV}$ 2011p-Pb $\sqrt{S_{NN}} = 5 \text{TeV}$ 2013

8

The LHC forward (LHCf) experiment

LHCf detector Arm#2

- All charged particles are swept by dipole magnet
- Neutral particles (photons and neutrons) arrive at LHCf
- 0 degree is covered

LHCf detectors

- Imaging/Sampling shower calorimeter
 - 2 different detectors (ARM1 & ARM2)

ARM1 : 20mmx20mm & 40mmx40mm
XY position : 4 layers of SciFi (1mm pitch)
Calorimeter : tungsten & 16 layers of plastic scinti.
→ 44 r.l.

ARM2 : 25mmx25mm & 32mmx32mm

XY position: 4 layers of Silicon micro-strip (0.16mm) Colorimeter : tungsten & 16 layers of plastic scinti.

Comparison of π^0 data @ $\sqrt{s} = 7 TeV$ w/ hadronic interaction models

- EPOS1.99 shows the best agreement with data in the models.
 - **DPMJET** and **PYTHIA** have harder pt spectra than data.
 - **QGSJET** has softer pt spectrum than data.

Comparison of n data @ $\sqrt{s} = 7$ TeV w/hadronic interaction models

No model completely explains the experiment results.

1000

1500

2000

2500

3000

Energy [GeV]

3500

500

0<mark>0</mark>

Nuclear modification factor

Data DPMJET3.04 **QGSJET-II-03 EPOS1.99**

- $\pi^0 p_T$ spectra in p-Pb@ $\sqrt{s_{NN}} = 5$ TeV
- Very large suppression (~ 0.1) @ p_{τ} >0.1GeV/c in proton-side.
- Models well reproduce the large suppression.
- LHCf pT spectra in p-Pb seems harder than one in p-p@5TeV expected from LHCf 7TeV & 900GeV results. (but not clear)

$$R_{pPb} \equiv \frac{d^2 N_{\pi^0}^{pPb} / dy dp_T}{\langle N_{coll} \rangle d^2 N_{\pi^0}^{pp} / dy ddp_T}$$

13

Energy flux by LHCf (very preliminary)

I start from the QGSJET-II-04 and try to modify so that the forward energy flux of neutron increase. But this modification should not change pions so much.

Modification method

- In order to increase energy flow of neutron at very forward region, the interaction in which the leading particle is neutron is increased.
 - 1. Select Non-diffractive events whose leading particles are not neutrons.
 - 10% of selected events are converted to Single diffractive events or Double diffractive events whose leading particles are neutrons.

Results of modification (1)

Results of modification (2)

Air shower simulation

10EeV proton shower is simulated using **COSMOS** air shower simulator.

Longitudinal development

Lateral distribution of E.M component

Future prospects

- LHC p-p collision @ $\sqrt{s} = 13$ TeV (~ 10^17eV)
 - 1 week operation in May 2015 w/ low luminosity.
 - \rightarrow Test of energy scaling of xF & pT distributions.
 - \rightarrow Enlarge the LHCf acceptance
 - → Common operation w/ ATLAS gives us data of 99% pure diffractive events.

Preparation of 13TeV operation

Assemble @ Nagoya July 2014

Beam test @ CERN-SPS Until tomorrow. It goes very well so far.

Summary

- LHCf measures the very forward hadron production to improve the models used in EAS simulations.
- LHCf had operations at p-p @ $\sqrt{s} = 0.9,7$ TeV and w/ p-Pb @ $\sqrt{s_{NN}} = 5$ TeV .
- Photons & π0 (EM component) in LHCf acceptance seems to be good agreement with EPOS1.99 model.
- Energy spectra of very forward neutron is not well described by models.
- QGSJET-II-04 output is modified to increase the leading neutron.
 - Neutron spectra at LHCf acceptance become harder than the observation results.
 - Xmax becomes larger (+5g/cm^2).

pseudorapidity and interactions

Future Operations

■ LHC p-p √s = 13 TeV

Operation for about 1 week in May 2015 with low luminosity collisions.

Test of Energy scaling

Enlarge the LHCf acceptance

