Numerical Modeling of Ultra-High Energy Cosmic Ray Propagation

Daniel Kuempel RWTH Aachen University / Germany

Günter Sigl Hamburg University / Germany

UHECR2014
October 2014 / Springdale / Utah / USA

bmb+f - Förderschwerpunkt

Astroteilchenphysik

Großgeräte der physikalischen Grundlagenforschung

Extra-galactic energy density

Cosmic rays can interact with background photons:

 ϵ' is the relevant energy scale for interaction

Interactions

CMB IRB (Kneiske 2004) URB (Protheroe 1996)

Frequency [Hz]

Pion production

Pion production for a head-on collision of a nucleon *N*:

$$N + \gamma \rightarrow N + \pi$$

with the threshold energy

$$E_{\text{thres}} = \frac{m_{\pi}(m_N + m_{\pi}/2)}{2\epsilon} \approx 6.8 \cdot 10^{19} \left(\frac{\epsilon}{10^{-3} \text{ eV}}\right)^{-1} \text{eV}$$

where $\epsilon \sim 10^{-3}~{\rm eV}$ represents a typical target photon such as a CMB photon. Both the electromagnetic and the strong interaction play a role.

Example: Pion production by protons via delta resonance:

Interactions

Pair production

Pair production by a nucleus with mass number *A* and charge *Z* on a photon:

$$\frac{A}{Z} + \gamma \rightarrow^A_Z + e^+ + e^- \qquad \qquad \text{induces electromagnetic cascades via inverse}$$

Compton scattering

with the threshold energy

$$E_{\text{thres}} = \frac{m_e(m + m_e)}{\epsilon} \approx 4.8 \cdot 10^{17} A \left(\frac{\epsilon}{10^{-3} \text{ eV}}\right)^{-1} \text{eV}$$

where $\epsilon \sim 10^{-3}~{\rm eV}$ represents a typical target photon such as a CMB photon.

Interactions

Pair production

Pair production by a nucleus with mass number A and charge Z on a photon:

$$\frac{A}{Z} + \gamma \rightarrow^A_Z + e^+ + e^- \qquad \text{induces electromagnetic cascades via inverse}$$

Compton scattering

with the threshold energy

$$E_{\text{thres}} = \frac{m_e(m + m_e)}{\epsilon} \approx 4.8 \cdot 10^{17} A \left(\frac{\epsilon}{10^{-3} \text{ eV}}\right)^{-1} \text{eV}$$

where $\epsilon \sim 10^{-3}~{\rm eV}$ represents a typical target photon such as a CMB photon.

Photodisintegration of nuclei

Gamma ray is absorbed by nuclei and causes it to enter excited state before splitting in two parts.

Changes in energy ΔE , and atomic number ΔA , are related by $\Delta E/E = \Delta A/A$ Thus, effective energy loss rate is given by:

$$\left. \frac{1}{E} \left. \frac{\mathrm{d}E}{\mathrm{d}t} \right|_{\mathrm{eff}} = \frac{1}{A} \frac{\mathrm{d}A}{\mathrm{d}t} = \sum_{i} \frac{i}{A} l_{A,i}(E) \right.$$
 emission rate of I nucleons from a nucleus of mass A

emission rate of i

Interaction rate

Interaction rate can be calculated as

Attenuation length for protons

UHECR 2014

- Low energies: energy loss dominated by expansion of the universe
- Intermediate energies:
 Most important loss length is pair production on CMB
- High energies: Most important loss length is pion production on CMB

GZK-effect: For propagation distances > 100 Mpc the primary energy is attenuated to almost the same value

3

Multiparameter challenge

Extragalactic

Photon

Neutrino

Helium

40 kpc

Proton

Aim: Constrain / determine astrophysical parameters Challenge: Many unknown/

uncertain parameters

Energy loss, cross sections
Change in composition
Background radiation model
Redshift effects

15 Mpc

Extragalactic Mag. Field

Strength, coherence length, structure (filaments, voids, cluster)

Galactic Mag. Field

Oxygen 100 FeV

Model and strength scale heights, turbulence

Direction (direct)
Energy (direct)
Composition
(indirect e.g. X_{max},)

Galactic

Daniel Kuempel UHECR 2014

Simulation Challenge

Flexibility and speed

Large parameter space, large statistics needed, multiple use cases

4D simulations

3D simulations including expansion of the universe

High resolution fields Large volume, fast lookup Galactic Propagation
Milky Way tiny (~ 30 kpc)
compared to extragalactic
distances (~ Mpc) Earth
tiny compared to Galaxy

Simulations

Much progress in recent years

Numerical propagation codes

CRPropa R.A. Batista et al. ICRC 2013 https://crpropa.desy.de

SimProp R. Aloisio et al. JCAP 10 007 (2012)

Experimental data

Using high statistic experimental data in combination with sophisticated propagation tools and powerful computing clusters we are entering a **new phase of data / MC comparison**

CRPropa 3

→ CRPropa in a nutshell:

- ▶ Publicly available numerical tool to propagate UHECR nuclei and its secondaries
- ► Takes into account **nuclear decay** and interaction with ambient photon fields such as **pion production**, **photo-disintegration**, **and pair-production**
- ▶ Model deflection of galactic and extra-galactic magnetic fields

Implement galactic magnetic fields

Much progress in recent years

Models based on Faraday rotation measurements and polarized and unpolarized synchrotron emission

Concentrate on field from Jannson & Farrar: JF12

R. Jansson and G. R. Farrar, ApJ 757 (2012) 14 R. Jansson and G. R. Farrar, ApJL 761 (2012) L11

Field strength of order micro-Gauss

Deflections important in

anisotropy studies

Daniel Kuempel UHECR 2014

Mean deflection for Auger and TA site

- Mean deflection assuming that particles arrive isotropically at the edge of the galaxy
- Events recorded at each site up to 60° in zenith angle

TA and Auger observe different deflections.
Important when comparing Auger and TA measurements

GZK vs. source exhaustion

- ► Differentiation via measurement of mass composition in suppression region
 - Need high statistic data and particle identification!

3D including EGMF and GMF

Simulation setup:

- **Sources**:
 - Mixed composition injection with relative abundances

Power low injection spectrum

$$\frac{\mathrm{d}N_i}{\mathrm{d}E} \propto A_i^{\alpha-1} E^{-\alpha} e^{-E/(Z_i E_{\mathrm{max}})}$$

$$E_{\mathrm{max}} = 10^{19.8} \; \mathrm{eV}$$

- ▶ Continuous source density following the large-scale-structure (LSS) baryon density of the Dolag et al. simulation up to 4 Gpc distance
- Magnetic fields
 - ▶ Extragalactic: Combination of Dolag et al. field structure and Miniati et al. strength
 - ▶ Galactic: JF12 model including regular, striated and turbulent component

3D including EGMF and GMF

Arrival directions

- ▶ Reasonable fit to **spectrum** above 10^{18.7} eV
- Measured mass composition not reproduced
- Small scale anisotropy decreases but still anisotropic features.

Daniel Kuempel UHECR 2014

Multi-messenger approach

▶ IceCube PeV neutrino events from extragalactic UHECRs?

- Difficult to interpret IceCube events in terms of cosmogenic neutrino flux
- ▶ Gamma ray flux of the order of Fermi diffuse level

Conclusion

- Numerical propagation of UHECRs plays an important role constraining astrophysical parameters
- Modern simulation tools enable ID, 3D and 4D simulations in structured (extra)galactic environments including secondaries
- ▶ Too early to draw decisive conclusions on astrophysical parameters
 - → Use more observables and more experimental data

- Secondaries as messengers may further constrain astrophysical parameters, e.g. by comparing with TeV observations
- ▶ Vibrant field of MC / data comparison. More results to come...

Extragalactic magnetic fields

- Some words of caution: Extragalactic magnetic fields are currently poorly constrained.
- Their origin is not well understood (primordial Universe, magnetic pollution from astrophysical sources, e.g. jets from radio galaxies, ...)
- Typical strength of the field varies:
 - 1-40 μ G with coherence length of about 10 kpc (clusters of galaxies)
 - ▶ 10⁻¹⁶ 10⁻⁶ G with coherence length between 1-10 Mpc (in filaments)
- Field strength probably related to matter density in this environment

Absence of powerful counterparts in the arrival direction of UHECRs is probably related to magnetic fields

- Simulations lead to very discrepant results
- Illustrates variety of assumptions made
- E.g. Sigl, Miniati & Enßlin estimate proton deflection with energy > 100 EeV by 10-20°, whereas Dolag et al. < 1° of the same energy

21

Secondary photons

Dominant interaction process is pair production:

$$\gamma_{\rm UHE} + \gamma_b \rightarrow e^+ + e^-$$

DK et al., ICRC 2009, 430

Strong attenuation in PeV regime by CMB photons

observation of galactic and nearby extragalactic sources may be possible

Current status: No photons above ~TeV energies observed

Galactic magnetic field lensing

Neglect energy loss during relatively short galactic propagation -> Effect of magnetic field can be addressed as magnetic lensing:

For a specific energy bin:

- Backtrack protons starting isotropically at Earth
- Departure direction and exit direction of galaxy binned with 1° resolution
- Calculate probability matrix for a particle entering the galaxy from direction n to observe at Earth from direction m

 Repeat procedure for different energies to produce energy dependent lens

• Particle with Z > 1 use rigidity dependent

deflection

Edge of Galaxy

3D magnetic field: Extragalactic magnetic field:

