UHECR2014, Oct. 12-15, 2014, Springdale (Utah)

Upgrade of the Pierre Auger Observatory

Karl-Heinz Kampert for the Pierre Auger Collaboration

- Why doing an upgrade ?
- Technical Realisation and Expected Performance
- Timeline & Costs

BERGISCHE JNIVERSITÄ[.] WUPPERTAL

Observation of Flux Suppression

Do we see the GZK-Effect ?

Karl-Heinz Kampert – University Wuppertal

UHECR2014, Springdale (Utah), Oct. 2014

Emax-model supported by RMS(Xmax)...

... and by <X_{max}>

Decomposition of Xmax-Distributions

PRD 2014 in press

UHECR Sky highly isotropic

Karl-Heinz Kampert – University Wuppertal

Science Goals of Auger Upgrade

1. Elucidate the origin of the flux suppreise. GZK vs. maximum energy scenarion

- fundamental constraints on UHECR s
- → galactic vs extragalactic origin
- reliable predictions of GZK v- and -γ fl

2. Search for a flux contribution of prote highest energies at a level of ~ 10%

- proton astronomy up to highest energ
 prospects of future UHECR experiment
- 3. Study of extensive air showers and hadron multi-particle production above \sqrt{s} =70 TeV

Need to study composition event-by-event into the flux suppression region !

E [eV]

110

100

E [eV] 10¹⁹

1020

10¹⁸

Power of Composition Enhanced Astronomy

assume present statistics: N=146 events (E>57 EeV), $P_{iso}=0.21$ and study correlation significance when protons correlate, but Fe does not

Power of Composition Enhanced Astronomy

white lines: contour levels at sigma = 1, 2, 3, ...

Power of Composition Enhanced Astronomy

assume present statistics: N=146 events (E>57 EeV), P_{iso}=0.21 and study correlation significance when protons correlate, but Fe does not Add 50% isotropic background: catalog incompleteness, distant sources, ...

white lines: contour levels at sigma = 1, 2, 3, \dots

Disentangling Int.-Models from Composition

Muon deficit in models (see M. Unger, tomorrow)

Conservative Approach:

Composition enhanced Anisotropy does not need to know absolute μ -numbers, just select X % of most μ -poor an most μ -rich events

More ambitious:

want to know if μ -poor events are compatible with protons...

Disentangling Int.-Models from Composition

$\langle \rho_{\mu} \rangle$ and RMS(ρ_{μ}) in a mixed composition changes distinctively different with X_{max} as compared to models of a pure p-composition

<u>Note:</u> p-domínated composítion at 10^{18.3} eV serves as benchmark for Fe at 10^{19.7} eV (superposition model)

Rational of Auger Upgrade

Enhancing the surface detector array for better e/μ separation will boost the science of Auger

- \rightarrow factor of ~10 in statistics for composition measurements
- → discriminate GZK vs maximum energy scenario
- → composition enhanced anisotropy (~10% protons?)
- → learn about global features of hadronic interactions at $\sqrt{s} > 70$ TeV
- → decisive prediction of UHE (cosmogenic) v-fluxes
- → decisive for next generation UHECR Experiments

Auger Observatory is in place to address all these questions now

N^µmax VS Xmax

Key Elements of Upgrade

1) New Electronics for Surface Detector

→ faster sampling, better triggers, larger dynamic range, more channels

2) Enhanced Muon-Counting in Surface Detector

Two options (out of five originally) under study: a) introduce vertical segmentation of tanks b) add scintillator on top of each tank

3) Extended operation of fluorescence telescopes

may double observation time

4) High Precision Array with shielded muon detectors

1) New SD-Electronics

Purpose:

- facilitate the readout of new electronic channels (PMTs)
- faster sampling (40 \rightarrow 120 MHz) for better timing and μ -identification
- enhanced dynamic range (by adding a small PMT)
- faster data processing and more sophisticated triggers
- better data monitoring

• design is ready

 prototypes are now being produced

2a) Enhanced Muon Counting: LSD

Karl-Heinz Kampert – University Wuppertal

Constancy of a_{em} and a_{μ}

Construction & Commissioning of LSD Tank

IOS LSD

UHECR2014, Springdale (Utah), Oct. 2014

2b) Enhanced Muon Counting: ASCII

ASCII: Auger Scintillator for Composition II

1 cm thick scintillator read out by green WLS

TOUNE

Karl-Heinz Kampert – University Wuppertal

,), Oct. 2014

4 m² ASCII prototype

Performance of ASCII

Prototype experiences accompanied by detailed performance estimates

CORSIKA Shower libraries were generated with different

70

60

50

40

30

20

10

Λ

-410

- energies (fixed and continuous)
- primaries
- zenith angles
- interaction models
- performance then studied
- per station and
- per event

Note: enhanced SD helps also improving photons and neutrino detection

 \Rightarrow M. Settimo, tomorrow

Discriminant [a.u.]

3) Extended Operation of FD-Telescopes

Integrating sphere

Flasher board

T sensor readout

SMU &

Picoammeter

Present FD data taking:

• illuminated fraction of moon < 70%

Monitoring

photodiodes

HEAT

DAO

Trigger

unit

- longer than 3 hrs below horizon
- \Rightarrow 22% theoretical uptime

PMT

'wheel'

12-channel

ΗV

Distribution board

LV for

PMTs

Karl-ł

(8 HV inputs)

(-5% bad weather -2% short nights)

~ I 5% effective uptime

Future plan:

astronom. (nautical) twilight: sun 18° (12°) below horizon moon >5° from telescope

~30 % effective uptime

condition	$I_{\rm A}~(\mu{\rm A})$	σ^2 (ADC ²)
no moon	0.5	25
1/4 moon	5	250
full moon	50	2500

will reduce HV to reduce aging (effective increase of threshold)

test setup to aging/noise studies

4) High Precision Complementary Array

Primary Aims:

- Complementary (and high-precision) measurement of S_{em} / S_{μ} for fraction of events
- Cross-check of S_{em} / S_{μ} separation of individual upgraded detector stations
- improve understanding of particle physics models

High Precision Array: Optimal E-range

study X_{max}, em-, µ-component in detail

→ change of composition or change of hadr. interaction ? $E_p @ 5.10^{18} eV$ anchor point for $E_{Fe} @ 10^{20} eV$

e.g. **O(100 km²)** ⇒ 30/yr @ ≥10¹⁹ eV

61 stations @ infill + 40 @ 1500 m

High Precision Array

Scintillators shielded by tank and concrete...

Two options considered

... or by 1.5 m soil

Karl-meinz Kamperr – University wupperrar

Documentary: CDR, PDR, TDR... y Positive Evaluation by International Science Advisory Committee

PIERRE

AUGER

Plans for a Proposal to Upgrade the Pierre Auger Observatory

Pierre Auger Collaboration

October 28, 2013

Submitter: Pierre Auger Collaboration Observatorio Pierre Auger, Av. San Martin Norte 304, 5613 Malargüe, Argentina

Kd

Proposal for Detector Upgrade

PIERRE

OBSERVATOR

Review of ongoing R&D in March 2014

OVERVIEW

Pierre Auger Collaboration

October 27, 2013

Submitter: Pierre Auger Collaboration Observatorio Pierre Auger, Av. San Martin Norte 304, 5613 Malargüe, Argentina

Time Line

	2013		2014				2015			2016			2017				2018							
Science Proposal subm			•																					
Review of Science Proposal					•																			
Prototyping in field			Х	X	Х	X																		
Selection of Prototype																								
Submission of TDR								•																
Final Evaluation								Ϋ́	L															
Seeking funds / construction								Π	•	X	X	X	X	X	X	X	X	X						
take data													X	Х	Х	Х	Х	Х	X	Х	Х	Х	X	→
upgrade finished																						•		

- Selection of full array upgrade option very soon
- Data taking into 2023 will double the statistics of all data up to 2015

WBS-Estimates: ~ 10-12 M€

This includes (at least part of) prototyping and engineering

Nearly all of the materials, services and effort to implement the upgrade will be provided by in-kind contributions from the collaborating countries

	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	Sum
Funding Upg (M€)	0,0	0,5	4,0	4,0	2,5	0,5	0,0	0,0	0,0	0,0	0,0	11,5
Operation (M€)	1,4	1,4	1,5	1,5	1,5	1,6	1,6	1,6	1,6	1,6	1,6	16,9
Researchers	525	525	525	525	525	525	525	525	525	525	525	
Engineers (FTE)	1,5	4	4	4	1,5	0	0	0	0	0	0	15

Summary: Auger Upgrade

Precise UHECR measurements lead to many surprising results and new questions Need to resolve open puzzles Observatory in unique position and collaboration is ready to go

Decisive for future experiments