Radio detection of air showers with LOFAR and AERA

Radboud University Nijmegen

Radio Emission in Air Showers

- Mainly: Charge separation in geomagnetic field

$$
\vec{E} \propto \vec{v} \times \vec{B}
$$

Theory predicts additional mechanisms:

- excess of electrons in shower: charge excess
- superposition of emission due to Cherenkov effects in atmosphere
polarization of radio signal

geomagnetic effect

charge excess

S

Radio Detectors

to measure properties of cosmic rays

- direction
- energy
- mass/type of particle with $\mathbf{\sim 1 0 0 \%}$ duty cycle

Large-scale radio detectors to measure extensive air showers

LOEARTRadboud Alr Shower Array E Eiga

20 scintillator units ($\sim 1 \mathrm{~m}^{2}$ each) read out by wavelength shifter bar and PMT in LOFAR core

provide

- properties of EAS
- and trigger

LOFAR

A measured air shower

Circles: LOFAR antennas, Pentagons: LORA particle detectors, size denotes signal strength

An air shower measured simultaneously with ...

the Fluorescence Telescopes

longitudinal shower profile

the Surface Detectors

footprint

$E \sim 2 * 10^{17} \mathrm{eV} \quad X_{\max } \sim \mathbf{8 6 0} \mathbf{g} / \mathrm{cm}^{2}$
zenith angle $\sim 75^{\circ}$ azimuth angle $\sim 8^{\circ}$

An air shower measured simultaneously with ...

the Radio Detectors

radio pulse

the Surface Detectors

footprint

$E \sim 2^{*} 10^{17} \mathrm{eV} \quad X_{\max } \sim 860 \mathrm{~g} / \mathrm{cm}^{2}$
zenith angle $\sim 75^{\circ}$ azimuth angle $\sim 8^{\circ}$

AUGER
obsERVATORY

An air shower measured simultaneously with ...

the Muon Detectors

the Surface Detectors

$E \sim 2^{*} 10^{17} \mathrm{eV} \quad X_{\max } \sim 860 \mathrm{~g} / \mathrm{cm}^{2}$
zenith angle $\sim 75^{\circ}$
azimuth angle $\sim 8^{\circ}$

PIERRE AUGGER

Polarization

Arrival direction

of showers with strong radio signal
north-south asymmetry v x B effect

Geomagnetic field

Auger Engineering Radio Array

$$
\vec{\epsilon} \propto \vec{v} \times \vec{B}
$$

Arrival direction

LOFAR

Polarization of the radio signal

measure direction of electric field vector at different positions

> geomagnetic

Askaryan

$$
a \equiv \sin (\alpha) \frac{\left|E^{\mathrm{A}}\right|}{\left|E^{\mathrm{G}}\right|}
$$

emission dominated by geomagnetic emission 14 +/- 2 \% charge excess processes

FIG. 9 (color online). Distribution of most probable values of a [see Eq. (10)] and their uncertainties for the AERA24 data set (see Appendix B for details). The 68\% confidence belt around the mean value of a is shown as the solid blue line; the value $a=0$ is indicated with the dotted red line; see text for further details.
A. Aab et al, Phys. Rev. D 89 (2014) 052002

Polarization footprint of an individual air shower

Charge excess fraction

Latera

Distribution

Lateral distribution of radio signals as measured by LOFAR

A. Nelles et al., Astropart. Phys. 60 (2015) 13

Lateral distribution of radio signals as measured by LOFAR

LOFAR
A. Nelles et al., Astropart. Phys. 60 (2015) 13

Lateral distribution of radio signals

Lateral distribution of radio signals

not rotational symmetric

fit two Gaussian functions

$P\left(x^{\prime}, y^{\prime}\right)=A_{+} \cdot \exp \left(\frac{-\left[\left(x^{\prime}-X_{+}\right)^{2}+\left(y^{\prime}-Y_{+}\right)^{2}\right]}{\sigma_{+}^{2}}\right)-A_{-} \cdot \exp \left(\frac{-\left[\left(x^{\prime}-X_{-}\right)^{2}+\left(y^{\prime}-Y_{-}\right)^{2}\right]}{\sigma_{-}^{2}}\right)+O$

A. Nelles et al., Astropart. Phys. 60 (2015) 13

Radio emission at 120-240 MHz

- LOFAR is the only dedicated experiment with high-band antennas
- tuned to astronomical observations
- include analogue beamforming
- complicated calibration routine

- Signals expected to be
- more affected by Cherenkov enhancement
- concentrated on a ring of emission

Measuring Cherenkov Rings

A. Nelles et al (LOFAR Collaboration), subm. to Astroparticle Physics

Direction

Shape of the Shower Front

Arrival time of radio signals

Arrival time of radio signals

Arrival timn nf radin cinnale

[^0]
Shape of Shower Front

A. Corstantje et al., Astropart. Phys. 61 (2015) 22

LOFAR

Accuracy of Shower Direction

Energy

AERA: direction of E field vector

AERA: direction of E field vector

- event selection:

```
\(\rightarrow \geq 3\) self-triggered stations
\(\rightarrow\) zenith \(<55^{\circ}\)
\(\rightarrow\) no events during thunderstorms
```


AERA: measured vs. expected values

- electric field is strongly polarised
- geomagnetic emission is dominant
\rightarrow correct electric field amplitude for incoming direction
$\rightarrow E_{\text {scaled }}=\frac{|\vec{E}|}{\sin (\alpha)}$

C. Glaser, ARENA (2012)

Energy of air shower

$$
P\left(x^{\prime}, y^{\prime}\right)=A_{+} \cdot \exp \left(\frac{\left.\left(x-x_{+}\right)^{2}+\left(y^{\prime}-Y_{+}\right)^{2}\right]}{\sigma_{+}^{2}}\right)-A_{-} \cdot \exp \left(\frac{-\left[\left(x^{\prime}-X_{-}\right)^{2}+\left(y^{\prime}-Y_{-}\right)^{2}\right]}{\sigma_{-}^{2}}\right)+O
$$

Mass (Iype)

Depth of the shower maximum Xmax

Q. Dorosti (ARENA 2014)

Particle type/mass distance to Xmax

Reconstruction of the depth of the shower maximum ($\mathrm{X}_{\text {max }}$)

Reconstruction of the depth of the shower maximum ($\mathrm{X}_{\text {max }}$)

- For each measured shower: Simulate many proton and iron showers
- Fit each simulation intensity pattern to the data
- Reconstruct depth of shower maximum: Xmax
- Uncertainty $<\mathbf{2 0} \mathbf{~ g} / \mathrm{cm}^{2}$!!

S. Buitink

Precision measurements of radio emission from air showers

- lateral distribution - not rotational symmetric parametrization with two Gaussian functions
-Cherenkov ring in 120-240 MHz band
-shape of radio wavefront --> hyperboloid
- polarization --> emission processes (charge excess fraction)

PIERRE AUGER OBSERVATORY

- properties of cosmic rays from radio data
- direction
- energy
- particle type/mass

Jörg R. Hörandel
stay tuned, several articles recently accepted and/or submitted

Further reading:

1. LOFAR - The low frequency array, A\&A 556 (2013) A2
2. Detecting cosmic rays with the LOFAR radio telescope, A\&A 560 (2013) A98
3. LORA: A scintillator array for LOFAR to measure extensive air showers, Nucl. Instr. \& Meth. A 767 (2014) 339
4. The all-particle energy spectrum of cosmic rays measured with LORA, in preparation for Astropart. Phys.
5. A parameterization of the radio emission of air showers as predicted by CoREAS simulations and applied to LOFAR measurements, Astropart. Phys. 60 (2015) 13
6. Precision measurement of the shape of the lateral distribution of radio emission in air showers, almost submitted to JCAP
7. The shape of the radio wavefront of extensive air showers as measured with LOFAR, Astropart. Phys. 61 (2015) 22
8. Polarized radio emission from extensive air showers measured with LOFAR, JCAP in press, arXiv: 1406.1355
9. Measuring a Cherenkov ring in the radio emission from air showers at 110-190 MHz with LOFAR, submitted to Astropart. Phys.
10.A method for high-precision reconstruction of air shower Xmax using two-dimensional radio intensity profiles, PRD in press, arXiv:1408.7001

Further reading:

1. Antennas for the detection of radio emission pulses from cosmic-ray induced air showers at the Pierre Auger Observatory, JINST 7 (2012) P10011
2. Advanced functionality for radio analysis in the Offline software framework of the Pierre Auger Observatory, Nucl. Instr. \& Meth. A 635 (2011) 92
3. Probing the radio emission from air showers with polarization measurements,
PRD 89 (2014) 052002
4. Energy correlation of the radio signal in air showers, in preparation

[^0]:

