UHECR 2014 October 12-15, Springdale Utah

Radio detection of air showers with LOFAR and AERA

Radboud University Nijmegen

http://particle.astro.ru.nl

air shower

Radio Detectors

- to measure properties of cosmic rays
- direction
- energy
- mass/type of particle
 with ~100% duty cycle

Large-scale radio detectors to measure extensive air showers

LOFAR core 23 stations ~5 km²

each (dutch) station: 96 low-band antennas 30-80 MHz high-band antennas (2x24 tiles) 120-240 MHz

LOFAR Radboud Air Shower Array - LORA

20 scintillator units (~1 m² each) read out by wavelength shifter bar and PMT in LOFAR core

properties of EASand trigger

LOFAR

A measured air shower

Circles: LOFAR antennas, Pentagons: LORA particle detectors, size denotes signal strength

An air shower measured simultaneously with ...

the Fluorescence Telescopes

longitudinal shower profile

the Surface Detectors

footprint

An air shower measured simultaneously with ...

the Radio Detectors

radio pulse

the Surface Detectors

footprint

An air shower measured simultaneously with ...

the Muon Detectors

the Surface Detectors

 $E \sim 2^*10^{17} \text{ eV}$ X_{max} ~ 860 g/cm² zenith angle ~ 75° azimuth angle ~ 8°

Polarization

Arrival direction

Arrival direction

Polarization of the radio signal

emission dominated by geomagnetic emission 14 +/- 2 % charge excess processes FIG. 9 (color online). Distribution of most probable values of *a* [see Eq. (10)] and their uncertainties for the AERA24 data set (see Appendix B for details). The 68% confidence belt around the mean value of *a* is shown as the solid blue line; the value a = 0 is indicated with the dotted red line; see text for further details.

Polarization footprint of an individual air shower

Charge excess fraction

Lateral Distribution

Lateral distribution of radio signals as measured by LOFAR

Lateral distribution of radio signals

as measured by LOFAR

A. Nelles et al., Astropart. Phys. 60 (2015) 13

Lateral distribution of radio signals

Lateral distribution of radio signals not rotational symmetric

fit two Gaussian functions

$$P(x',y') = A_{+} \cdot \exp\left(\frac{-[(x'-X_{+})^{2} + (y'-Y_{+})^{2}]}{\sigma_{+}^{2}}\right) - A_{-} \cdot \exp\left(\frac{-[(x'-X_{-})^{2} + (y'-Y_{-})^{2}]}{\sigma_{-}^{2}}\right) + O$$

A. Nelles et al., Astropart. Phys. 60 (2015) 13

LBA 10-90 MHz Simulations & Measurements

zenith angle 31° 336 antennas χ^2 / ndf = 1.02

HBA 110-240 MHz

Simulations & Measurements

Relativistic time compression gives a Cherenkov ring

20

Radio emission at 120 - 240 MHz

- LOFAR is the only dedicated experiment with high-band antennas
 - tuned to astronomical observations
 - include analogue beamforming
 complicated calibration routine

- Signals expected to be
 - more affected by Cherenkov enhancement
 - concentrated on a ring of emission

Measuring Cherenkov Rings

110 - 190 MHz

A. Nelles et al (LOFAR Collaboration), subm. to Astroparticle Physics

Drecton

Shape of the Shower Front

Arrival time of radio signals

A. Corstantje et al., Astropart. Phys. 61 (2015) 22

Arrival time of radio signals

Arrival time of radio cignale

Shape of Shower Front

Accuracy of Shower Direction

AERA: direction of E field vector

Christian Glaser

ARENA 2012 – AERA Energy Calibration

6

C. Glaser, ARENA (2012)

AERA: direction of E field vector

event selection: 90° → \geq 3 self-triggered stations → zenith < 55°</p> B-Field Vector 135° 45° no events during thunderstorms 70.60 50 . 40 . 30 20 10^{-5} 180° 0° 225° 315° 270° 225°

AERA: measured vs. expected values

Christian Glaser

ARENA 2012 – AERA Energy Calibration

Mass (Type)

Depth of the shower maximum Xmax

Q. Dorosti (ARENA 2014)

Experimental data: super-hybrid events

Reconstruction of the depth of the shower maximum (X_{max})

ID 86129434

Reconstruction of the depth of the shower maximum (X_{max})

- For each measured shower: Simulate many proton and iron showers
- Fit each simulation intensity pattern to the data
- Reconstruct depth of shower maximum: Xmax

Precision measurements of radio emission from air showers

- lateral distribution not rotational symmetric parametrization with two Gaussian functions
- Cherenkov ring in 120 240 MHz band
- shape of radio wavefront --> hyperboloid
- polarization --> emission processes (charge excess fraction)
- properties of cosmic rays from radio data
 - direction
 - energy
 - particle type/mass

stay tuned, several articles recently accepted and/or submitted

Jörg R. Hörandel

Radboud University Nijmegen

http://particle.astro.ru.nl

Further reading:

- 1. LOFAR The low frequency array, A&A 556 (2013) A2
- 2. Detecting cosmic rays with the LOFAR radio telescope, A&A 560 (2013) A98
- **3. LORA: A scintillator array for LOFAR to measure extensive air showers**, Nucl. Instr. & Meth. A 767 (2014) 339
- 4. The all-particle energy spectrum of cosmic rays measured with LORA, in preparation for Astropart. Phys.
- 5. A parameterization of the radio emission of air showers as predicted by CoREAS simulations and applied to LOFAR measurements, Astropart. Phys. 60 (2015) 13
- 6. Precision measurement of the shape of the lateral distribution of radio emission in air showers, *almost* submitted to JCAP
- 7. The shape of the radio wavefront of extensive air showers as measured with LOFAR, Astropart. Phys. 61 (2015) 22
- 8. Polarized radio emission from extensive air showers measured with LOFAR, JCAP in press, arXiv:1406.1355
- 9. Measuring a Cherenkov ring in the radio emission from air showers at 110-190 MHz with LOFAR, submitted to Astropart. Phys.
- 10.A method for high-precision reconstruction of air shower Xmax using two-dimensional radio intensity profiles, PRD in press, arXiv:1408.7001

Further reading:

- 1. Antennas for the detection of radio emission pulses from cosmic-ray induced air showers at the Pierre Auger Observatory, JINST 7 (2012) P10011
- 2. Advanced functionality for radio analysis in the Offline software framework of the Pierre Auger Observatory, Nucl. Instr. & Meth. A 635 (2011) 92
- 3. Probing the radio emission from air showers with polarization measurements, PRD 89 (2014) 052002
- 4. Energy correlation of the radio signal in air showers, in preparation