

Multi-messenger astronomy

UHECR 2014 2/17

UHECR data set

- Period: 01/01/2004 to 31/03/2014.
- 231 events above 52 EeV.
- $\bullet \theta_{\text{max}} = 80^{\circ}$
- Angular resolution: 0.9°

Data will be given to the working group soon.

- Period: 11/05/2008 to 01/05/2014.
- 87 events above 57 EeV.
- $\bullet \theta_{\text{max}} = 55^{\circ}$
- Angular resolution: 1.5°

72 events are public (arXiv:1404.5890) + 1 year of data that will be provided to the working group.

UHECR 2014 3/17

Neutrino data sets

- 3-year HESE Cascades: 28 events (IC79+IC86-I+IC86-II)
- Golden sample of tracks: 3 of the HESE tracks plus 9 events with $\rm E_{dep}$ > 100 TeV from diffuse up-going analysis (IC79+IC86-I).

UHECR 2014 4/17

Neutrino data sets

• Point source sample: 4-year (IC40+IC59+IC79+IC86-I) sample of clean, through-going muons that could be associated with charged-current muon neutrino interactions (394,000 events).

Accepted by Astrophys. J. (ArXiv:1406.6757)

UHECR 2014 5/17

Analyses to be performed

- 1) Crosscorrelation method using the 3-year HESE sample (IC79+IC86-I+IC86-II) + high energy up-going tracks (IC79+IC86-I).
- 2) Stacking method using the 3-year HESE sample (IC79+IC86-I+IC86-II) + high energy up-going tracks (IC79+IC86-I).
- 3) Stacking method using the 4-year IceCube point source sample (IC40+IC59+IC79+IC86-I).

UHECR 2014 6/17

Crosscorrelation function

Compute the number of UHECR-neutrino pairs as a function of the angular separation in the data $(n_{_{D}}(\alpha))$.

Note: the crosscorrelation method does not rely on any assumption about the magnetic deflections.

UHECR 2014 7/17

Crosscorrelation function Sensitivity and discovery potential

- 1) Neutrino positions fixed. Unknown source positions: Gaussian smearing to the HESE positions with $\sigma_{HESE} = 1^{\circ}$; 10° for tracks and cascades respectively.
- 2) n_{sCR} CR source events from these new

source positions choosing randomly one of them each time (weighted by the exposure of Auger or TA) and adding a Gaussian smearing with $\sigma = (\sigma_{exp}^2 + \sigma_{MD}^2)^{1/2}$ where

 σ_{exp} = 0.9° or 1.5°, σ_{MD} = 1°;3°;6° 100 EeV/E_i.

3) Add 303 - $n_{_{SCR}}$ randomly distributed arrival

directions of CRs weighted by the exposures of Auger and TA.

UHECR 2014 8/17

Crosscorrelation function Sensitivity and discovery potential

Preliminary

σ_{MD}	Golden tracks		HESE Cascades		
	Sensit.	3σ Disc. Pot.	Sensit.	3σ Disc. Pot.	
$1^{\circ}~100~{ m EeV}/E_{i}$	3.7	7.9	17.9	40.2	
$3^{\circ}~100~{ m EeV}/E_{i}$	5.9	13.4	19.5	44.3	
6° 100 EeV/ E_i	9.4	21.4	-	-	

UHECR 2014 9/17

Stacking method

The discovery potential improves as more sources are stacked.

The "sources" are:

Analysis 2): the locations of neutrinos

Analysis 3): the locations of UHECRs

Example of improvement

UHECR 2014 10/17

Stacking with HESE and high energy tracks **Unbinned Maximum Likelihood**

One fit parameter: the number of signal events $n_{_{\rm sCR}}$

$$\ln \mathcal{L} = \sum_{i=0}^{N_{\mathrm{Auger}}} \ln \left(\frac{n_{s_{CR}} S_{i}^{\mathrm{Auger}}}{N_{\mathrm{tot}}} + \frac{N_{\mathrm{tot}} - n_{s_{CR}}}{N_{\mathrm{tot}}} B_{i}^{\mathrm{Auger}} \right) + \underbrace{\frac{N_{\mathrm{tot}} - n_{s_{CR}}}{N_{\mathrm{tot}}} B_{i}^{\mathrm{Auger}}}_{PDF:} + \underbrace{\frac{N_{\mathrm{TA}}}{N_{\mathrm{tot}}} B_{i}^{\mathrm{TA}}}_{PDF:} + \underbrace{\frac{N_{\mathrm{tot}} - n_{s_{CR}}}{N_{\mathrm{tot}}} B_{i}^{\mathrm{TA}}}_{N_{\mathrm{tot}}} + \underbrace{\frac{N_{\mathrm{tot}} - n_{s_{CR}}}{N_{\mathrm{tot}}} B_{i}^{\mathrm{TA}}}_{N_{\mathrm{tot}}}$$

$$= \sum_{i=0}^{N_{\mathrm{Auger}}} \ln \left(\frac{n_{s_{CR}} S_{i}^{\mathrm{TA}}}{N_{\mathrm{tot}}} + \frac{N_{\mathrm{tot}} - n_{s_{CR}}}{N_{\mathrm{tot}}} B_{i}^{\mathrm{TA}} \right)$$

$$= \sum_{i=0}^{N_{\mathrm{tot}}} \ln \left(\frac{n_{s_{CR}} S_{i}^{\mathrm{TA}}}{N_{\mathrm{tot}}} + \frac{N_{\mathrm{tot}} - n_{s_{CR}}}{N_{\mathrm{tot}}} B_{i}^{\mathrm{TA}} \right)$$

$$S_i = \frac{1}{N_{\nu}} \sum_{j=0}^{N_{\nu}} \omega(\delta^j) S_j^j(ra_i, \delta_i, \sigma_{MD})$$
 A PDF for a single CR and a single v: takes into account the v map and the magnetic deflection

The test statistic
$$TS = -2 \ln \left(\frac{\mathcal{L}(n_{s_{CR}})}{\mathcal{L}(n_{s_{CR}} = 0)} \right)$$
 should follow a χ^2 of 1 dof.

UHECR 2014

Stacking with HESE and high energy tracks Spatial PDFs: example for Auger

UHECR 2014 12/17

Stacking with HESE and high energy tracks Sensitivity and discovery potential

Preliminary

σ_{MD}	All events		
	Sensit.	3σ Disc. Pot.	5σ Disc. Pot.
$1^{\circ}~100~{ m EeV}/E_{i}$	-	-	-
$3^{\circ}~100~{ m EeV}/E_{i}$	-	33.3	63.8
$6^{\circ}~100~{ m EeV}/E_{i}$	-	40.1	84.2

$\sigma_{ extit{MD}}$	Golden tracks			HESE Cascades		
	Sensit.	3σ DP	5σ DP	Sensit.	3σ DP	5σ DP
$1^{\circ}~100~{ m EeV}/E_{i}$	-	-	-	-	-	-
$3^{\circ}~100~{ m EeV}/E_i$	-	5.1	14.2	-	89.5	132.6
$6^{\circ}~100~{ m EeV}/E_i$	-	-	-	-	99.2	150

UHECR 2014 13/17

Stacking with the neutrino PS sample Likelihood PS method

Maximize: γ (the neutrino spectral index) and n_{sv} (number of signal events)

$$\mathcal{L}(n_{s_{\nu}}, \gamma) = \prod_{i=1}^{N_{\nu}} \left(\frac{n_{s_{\nu}}}{N_{\nu}} S_{i}(\gamma) + \left(1 - \frac{n_{s_{\nu}}}{N_{\nu}} \right) B_{i} \right)$$

$$S_{i} = \frac{1}{2\pi\sigma_{i}^{2}} e^{-r_{i}^{2}/2\sigma_{i}^{2}} P(E_{i}|\gamma)$$
Poatial

Energy

UHECR 2014 14/17

Stacking with the neutrino PS sample

We assume a spatial extension of: $\sigma_{src} = D 100 \text{ EeV/E}_{UHECR} \text{ with D=1}^{\circ},3^{\circ},6^{\circ}$

For calculating the discovery potentials we inject neutrinos from a point source displaced from the UHECR by the median deflection.

"Too many" UHECRs => the fraction of the sky covered is such that it becomes a diffuse analysis => Introduce a cut in the minimum UHECR energy, which is the optimal?

UHECR 2014 15/17

Stacking with the neutrino PS sample

Different energy thresholds according to the 3 different assumed magnetic deflections.

We will separate the analysis in two: one for the Northern hemisphere and one for the Southern hemisphere.

UHECR 2014 16/17

Conclusions

- First joint analysis between IceCube, Auger and TA.
- Sensitivity and discovery potentials are being computed for the chosen analyses.
- Stay tuned for the upcoming unblinding and results!

UHECR 2014 17/17

Back up slides

The IceCube Neutrino Telescope

- 1 km³ volume
- 86 strings
- 5160 DOMs
- 17 m PMT-PMT spacing per string
- 125 m string spacing
- Completed in Dec. 2010

Detection Method

Neutrinos are detected by looking for Cherenkov radiation from secondary particles (muons, particle showers).

- Same dataset ("2 years" = 662 days).
- Containment at HE: (Q_{tot} > 6000 p.e.)
- Use atmospheric muon veto.
- Background:
- *Atmospheric muons (mostly sneaking through the main dust layer): 6 ± 3.4 per 2 years (estimated from data using a tagging region).
- *Atmospheric neutrinos: 4.6 + 3.7 1.2 events in 2 years (large uncertainties at high energies).

28 observed events!

Background: $10.6^{+5}_{-3.6}$ Significance: 3.3σ for 26 events, combining with 2.8σ from PeV neutrinos: 4.1σ for 28 events.

Science 342, 1242856 (2013)

Update: one more year of data 37 events observed in 3 years

Background:

 $6.6^{+5.9}_{-1.6}$ atm. neutrinos

8.4 ± 4.2 atm. muons

Preliminary significance (full likelihood fit of all components):

5.7σ w.r.t reference background

Deposited EM-Equivalent Energy in Detector (TeV)

PRL 113, 101101 (2014)

Energy spectrum:

- Harder than any expected atmospheric background.
- Compatible with benchmark E⁻² astrophysical model.
- Potential cutoff at about few PeV
- Best fit: (0.95 ± 0.3) 10⁻⁸ E⁻² GeV cm⁻² s⁻¹ sr⁻¹ per flavor.

Declination distribution:

Events from
Northern
Hemisphere
absorbed in Earth.

Compatible with isotropic flux.

No significant clustering observed in position or time. (cluster close to the GC has a P-value of 7%)

Cascade reconstruction

HESE zenith distribution

HESE zenith distribution

HESE zenith distribution

0.5

HESE effective area

HESE effective volume

HESEAtmospheric muon background

HESE

atmospheric muons

 estimated from data (tag events on outer layer)

$$6 \pm 3.4 \, \mu's$$

- atmospheric neutrinos
 - reject events with accompanied muons for > 60 TeV (self-veto)

(P. Desiati)

HESE .

Down-going self-veto

Prompt v_u (solid) and v_e (dashed)

Gaisser, Jero, Karle, van Santen, Phys. Rev. D, 90:023009 (2014)

HESE

(P. Desiati)

IC79+IC86-I data, only considering up-going events

Evidence for a cosmic neutrino flux found at levels of around 10^{-8} E⁻² GeV cm⁻² s⁻¹ sr⁻¹ per flavor with a significance of 3.9σ over atmospheric expectation.

 $E^2 \phi(E) = (0.96 \pm 0.35) \ 10^{-8} \ GeV \ cm^{-2} \ s^{-1} \ sr^{-1}$

Diffuse muon neutrinos

Neutrino Effective Area

Muon Effective Area

Neutrino Effective Area compared to IC59

Angular Resolution

Event collection

Strings	Year	μrate	number of v
IC22	2007	500 Hz	-20 / day
IC40	2008	1100 Hz	-40 / day
IC59	2009	1700 Hz	-70 / day
IC79	2010	2000 Hz	>100 /day
IC86-1,2,3	2011+	2200 Hz	-200 / day

(*) SMT8 rate

