

Kavli Institute for Cosmological Physics

Development of a prototype for Fluorescence detector Array of Single-pixel Telescopes (FAST)

<u>T. Fujii</u>^{1,2}, P. Privitera¹, J. Jiang¹, A. Matalon¹, P. Motloch¹, M. Casolino³, Y. Takizawa³, M. Bertaina⁴, J. N. Matthews⁵, K. Yamazaki⁶, B. Dawson⁷, M. Malacari⁷ ¹KICP University of Chicago, ²ICRR University of Tokyo, ³RIKEN, ⁴University of Torino, ⁵University of Utah, ⁶Osaka City University, ⁷University of Adelaide 2014/Oct/15, UHECR 2014 <u>fujii@kicp.uchicago.edu</u>

Origin and Nature of UHECRs Particle Interaction at the Highest Energies 5 - 10 years Exposure and full sky coverage "Precision" measurement **Detector R&D** Radio, TA×4 + Auger Auger Muon Upgrade SiPM detector, Low energy enhancement **JEM-EUSO:** Pioneer detection FD or SD from space and sizable increase (TALE+TA-muon+NICHE, Auger infill+HEAT+AMIGA) of exposure **Next Generation Observatories** In space (100×exposure) 10 - 20 years Ground (10×exposure with high quality events) P. Privitera et al., KICP workshop,

September, 2013

Fluorescence detector Array of Single-Pixel Telescopes (FAST)

Target : > 10^{19.5} eV, UHE nuclei and neutral particles

- ♦ Huge target volume ⇒ Fluorescence detector array
- Fine pixelated camera (Auger, TA)

Too expensive to cover a large area

Low cost single pixel telescope (FAST)

Shower profile reconstruction by given geometry

Fluorescence detector Array of Single-Pixel Telescopes (FAST)

- Reference design: 1 m²
 aperture, 15°×15° FoV
 per single PMT
- 12 Telescope, 48 PMTs, 30°×360° FoV in each station.
 - If 127 stations are installed with 20 km spacing, a ground coverage is ~ 40,000 km²
- Geometry: Radio, SD or three coincidence of FAST.

Window of Opportunity at EUSO-TA

uorescence detector Array of Single-pixel Telescopes

Temporally borrow the EUSO-TA optics at the TA site.

M. Casolino (RIKEN), M. Bertaina, M. Marengo, F. Borotto, B. Giraudo (INFN-Torino)

- Two Fresnel lenses (+ 1 UV acrylic plate in front for protection)
- ★ 1 m² aperture, 14°×14° FoV ≒ FAST reference design.
- Installation in February 2014, test measurements in April and June 2014.

Collaboration between Pierre Auger, Telescope Array and JEM-EUSO.

<u>luorescence detector Array of Single-pixel Telescopes</u>

- PMT 8 inch R5912-03
- E7694-01(AC coupling)
- MUG6 UV band pass filter
- YAP (YAIO₃: Ce) scintillator with ²⁴¹Am (50 Hz) to monitor gain stability.

DAQ System

TAFD external trigger, 3~5 Hz

15 MHz low pass filter

Portable VME

Electronics

Struck FADC 50 MHz
sampling, SIS3350
GPS board, HytecGPS2092

Anode & dynode Signal Camera of FAST

High Voltage power supply, N1419 CAEN

> All modules are remotely controlled through wireless network.

Amplifiers R979 CAEN 777,Phillips scientific Signal×10 777,Phillips scientific

Installation in February 2014

luorescence detector Array of Single-pixel Telescopes

9 Start observation!!

Operation in Clear Night

orescence detector Array of Single-pixel Telescopes

WALL CONTRACT OF Single-Dixed Telescopes Thorescence detector Array of Single-Dixed Telescopes

<u>Central Laser Facility</u> Vertical UV laser shooting every 30 minutes, 21 km from FAST, 10 Hz, 2.2 mJ, 300 shots

GPS timing difference (FAST - TAFD) [μs] FAST-TAFD timing resolution, 100 ns. (20.9 μs is the TAFD trigger processing time.)

- laser signal ~ $10^{19.5}$ eV at 21 km
- peak signal ~ 7 p.e. / 100 ns (σ_{p.e.}
 = 12 p.e.) at the limit of detectability

Preliminary CLF Simulation

)00 3500 400 Time (20 ns / bin)

N

Portable Laser Signal

Time (100 ns / bin)

Event 101 - Channel 0

 Vertical UV laser with same energy of CLF (~10^{19.5} eV) at 6 km from FAST.

Operated by K. Yamazaki (OCU)

- Peak signal ~ 300 p.e. / 100 ns. All shots are detected.
- Expected signal TAFD/FAST: (7 m² aperture × 0.7 shadow × 0.9 mirror) / (1 m² aperture × 0.43 optics efficiency) ~ 10

Shower Signal Search

We searched for FAST signals in coincidence with TAFD showers in the FAST FoV.

 Data set: April and June observation, 19 days, 83 hours.

16 candidates
 found.

 Low energy showers as expected.

Example of Signal Candidates

Comparison with simulated signal using result reconstructed by TAFD

15

Distance vs Energy (from TAFD) for Candidates

Nuorescence detector Array of Single-pixel Telescopes

Figure 14: Distribution of the impact parameter as a function of the primary energy reconstructed by TA for shower candidates detected by the FAST prototype. The line indicates the maximum detectable distance by the FAST prototype (not fitted).

Almost! $\log(E/eV) = 19.1$ pmt_0_20140702_081814_380766350 45, 324 43, 289 40, 2560 Elevation angle [degree] 38, 225 25 35, 1964 33, 169 20 28, 1210 25, 1000 22, 810 15 20, 640 17, 49 15, 360 10 12, 250 10, 160 7, 90 L 40 300 Azimuth angle [degree]

16

Simulation Study

Reconstruction efficiency

logE	Proton	Iron
18.5	0.65	0.56
19.0	0.88	0.89
19.5	0.99	1.00

- FAST with 20 km spacing
- With smearing SD accuracy of geometry, Xmax resolution of FAST is 30 g/cm² at 10^{19.5} eV.
- 100% efficiency at $10^{19.5}$ eV
- Under implementing a reconstruction by only FAST.

EXAMPLE A CONTRACT OF SINGLE-DIXED SUMMARY OF SINGLE-DIXED TELESCOPES

- Promising results from the first field test of FAST concept:
 - very stable and simple operation
 - robust behavior under night sky background (gain stability, a single bright star does not matter when integrating over the large FAST FOV)
 - laser shots and shower candidates detected
 - sensitivity is consistent with simulated expectation
- Very successful example of Auger, TA, JEM-EUSO collaboration.
- Several improvements possible, e.g. high Q.E. PMT, narrow UV pass filter, mirror design, reconstruction method, etc.
- Next step: full 30°×30° prototype.

18

Data

Backup

Coverage and the number of FAST stations

Cost M\$USD

0

1038

4152

9342

0.1

0.7

1.9

3.7

6.1

9.1

12.7

16.9

21.7

27.1

33.1

39.7

46.9

54.7

63.1

72.1

81.7

91.9

102.7

114.1

126.1

Fluorescence detector Array of Single-pixel Telescopes

20

1261

415200

Gain Calibration by LED in Laboratory

Fluorescence detector Array of Single-pixel Telescopes

