Development of a prototype for Fluorescence detector Array of Single-pixel Telescopes (FAST)

T. Fujii ${ }^{1,2}$, P. Privitera ${ }^{1}$, J. Jiang ${ }^{1}$, A. Matalon ${ }^{1}$, P. Motloch ${ }^{1}$, M. Casolino ${ }^{3}$, Y. Takizawa ${ }^{3}$, M. Bertaina ${ }^{4}$,
J. N. Matthews ${ }^{5}$, K. Yamazaki ${ }^{6}$, B. Dawson ${ }^{7}$, M. Malacari ${ }^{7}$
${ }^{1}$ KICP University of Chicago, ${ }^{2}$ ICRR University of Tokyo, ${ }^{3}$ RIKEN, ${ }^{4}$ University of Torino, ${ }^{5}$ University of Utah, ${ }^{6}$ Osaka City University, ${ }^{7}$ University of Adelaide

2014/Oct/15, UHECR 2014 fujii@kicp.uchicago.edu

Physics Goal and Future Prospects

Origin and Nature of UHECRs

Particle Interaction at the Highest Energies

$$
5-10 \text { years }
$$

Exposure and full sky coverage TA $\times 4+$ Auger
JEM-EUSO: Pioneer detection from space and sizable increase of exposure

Detector R\&D
Radio,
SiPM detector,
FD or SD

"Precision" measurement Auger Muon Upgrade Low energy enhancement (TALE+TA-muon + NICHE, Auger infill+HEAT+AMIGA)

Fluorescence detector Array of Single-Pixel Telescopes (FAST)

\uparrow Target : > $10^{19.5} \mathbf{e V}$, UHE nuclei and neutral particles
\downarrow Huge target volume \Rightarrow Fluorescence detector array
Fine pixelated camera (Auger, TA)

Too expensive to cover a large area

Shower profile reconstruction by given geometry

Fluorescence detector Array of Single-Pixel Telescopes (FAST)

,

20 km
-

Window of Opportunity at EUSO-TA

Telescope Array, Utah, USA

Black Rock Mesa site

EUSO-TA optics

M. Casolino (RIKEN), M. Bertaina, M. Marengo, F. Borotto, B. Giraudo (INFN-Torino)

* Two Fresnel lenses (+ 1 UV acrylic plate in front for protection)
- $1 \mathrm{~m}^{2}$ aperture, $14^{\circ} \times 14^{\circ} \mathrm{FoV} \fallingdotseq$ FAST reference design.
- Installation in February 2014, test measurements in April and June 2014.
- Collaboration between Pierre Auger, Telescope Array and JEM-EUSO.

Camera of FAST

- PMT 8 inch R5912-03
\rightarrow E7694-01 (AC coupling)
- MUG6 UV band pass filter
\downarrow YAP ($\left.\mathrm{YAIO}_{3}: \mathrm{Ce}\right)$ scintillator with ${ }^{241} \mathrm{Am}(50 \mathrm{~Hz})$ to monitor gain stability.

DAQ System

TAFD external trigger, $3 \sim 5 \mathrm{~Hz}$

Anode \& dynode Signal

Amplifiers
Camera of FAST

15 MHz
low pass filter

Portable VME Electronics

- Struck FADC 50 MHz sampling, SIS3350
- GPS board, HytecGPS2092

R979 CAEN 777, Phillips scientific
Signal $\times 10$

High Voltage power supply, N1419 CAEN

All modules are remotely controlled through wireless network.

Installation in February 2014

Fluorescence detector Arrav of Single-pixel Telescopes

9 Start observation!!

Operation in Clear Night

\downarrow Variance is proportional to PMT current. Electronic noise is negligible with regard to night sky background.

- Good gain stability during data taking, consistent with PMT gain temperature dependence of $-1 \% /{ }^{\circ} \mathrm{C}$

GPS Timing and CLF Signal

Central Laser Facility

 Vertical UV laser shooting every 30 minutes, 21 km from FAST, $10 \mathrm{~Hz}, 2.2 \mathrm{~mJ}, 300$ shotsTrace Sum - Channel 0

GPS timing difference (FAST - TAFD) [$\mu \mathrm{s}$]

- FAST-TAFD timing resolution, 100 ns . ($20.9 \mu \mathrm{~s}$ is the TAFD trigger processing time.)
\uparrow laser signal $\sim 10^{19.5} \mathrm{eV}$ at 21 km peak signal ~ 7 p.e. / 100 ns ($\sigma_{\text {p.e. }}$ $=12$ p.e.) at the limit of detectability

 Fhuorescence detector Arrav of Single-pixel Telescones

Trace Sum - Channel 0

Raytracing
Y. Takizawa (RIKEN)
$+14^{\circ}$

Directional sensitivity

Portable Laser Signal

Event 101 - Channel 0

- Vertical UV laser with same energy of CLF ($\sim 10^{19.5} \mathrm{eV}$) at 6 km from FAST.

Operated by K. Yamazaki (OCU)

- Peak signal ~300 p.e. / 100 ns. All shots are detected.
\downarrow Expected signal TAFD/FAST: ($7 \mathrm{~m}^{2}$ aperture $\times 0.7$ shadow \times 0.9 mirror $) /\left(1 \mathrm{~m}^{2}\right.$ aperture \times 0.43 optics efficiency) ~ 10

Shower Signal Search

- Data set: April and June observation, 19 days, 83 hours.
- 16 candidates found.
\uparrow Low energy showers as expected.

 Comparison with simulated signal using result reconstructed by TAFD

Event 582 - Channel 0

Event 111 - Channel 0

A signal location is fluctuated within the TAFD trigger frame of $12.8 \mu \mathrm{~s}$.

Distance vs Energy（from TAFD）for Candidates

Γ Supeimpone nistoyans
Γ seecet signu oniy
F Signa in photoetections
Γ Seloet CLF Signt Cmodites
－7 Jbee comection
5 Fast Fourier Trandorn
－Chasnel 0 conly
Chamel 0 Calib ${ }^{0.3}$ 희
Chamel 1 Calb 0 0．83
Sum up bin ${ }^{\text {s }}$ 类
－Spectrum Hstogam
Reculculis Hatbogies
－Signal
Pesentax Upper Ein ${ }^{1070}$ 호
Signal towe Bin ${ }^{1970}$＊
Signa Upper Bin ${ }^{2000}$ 者
Sigatiance（SNT）\square^{10} 䊀
Sipal min \square^{1} 匊
Recalculate Spectrum
Event UTC Date and Time
201407071
09．0103241279730
UTC recond
5150305883
Protie Reconituxion

Figure 14：Distribution of the impact parameter as a function of the primary energy recon structed by TA for shower candidates detected by the FAST prototype．The line indicates the maximum detectable distance by the FAST prototype（not fitted）．

Almost！ $\log (E / \mathrm{eV})=19.1$

Simulation Study

+ 4 PMTs Telescope

- Reconstruction efficiency

$\log \mathrm{E}$	Proton	Iron
18.5	0.65	0.56
19.0	0.88	0.89
19.5	0.99	1.00

Summary and Future Plans

- Promising results from the first field test of FAST concept:
- very stable and simple operation
- robust behavior under night sky background (gain stability, a single bright star does not matter when integrating over the large FAST FOV)
- laser shots and shower candidates detected
- sensitivity is consistent with simulated expectation
- Very successful example of Auger, TA, JEM-EUSO collaboration.
- Several improvements possible, e.g. high Q.E. PMT, narrow UV pass filter, mirror design, reconstruction method, etc.
\uparrow Next step: full $30^{\circ} \times 30^{\circ}$ prototype.

Backup

Coverage and the number of FAST stations

20

L_st	S [km^2]	Cost Ms USD	
0	1	0	0.1
1	7	1038	0.7
2	19	4152	1.9
3	37	9342	3.7
4	61	16608	6.1
5	91	25950	9.1
6	127	37368	12.7
7	169	50862	16.9
8	217	66432	21.7
9	271	84078	27.1
10	331	103800	33.1
11	397	125598	39.7
12	469	149472	46.9
13	547	175422	54.7
14	631	203448	63.1
15	721	233550	72.1
16	817	265728	81.7
17	919	299982	91.9
18	1027	336312	102.7
19	1141	374718	114.1
20	1261	415200	126.1

Gain Calibration by LED in Laboratory

