

PIERRE

Review of LHC Data

Ralf Ulrich

Karlsruhe Institute of Technology

UHECR, 13. Oct 2014 Springdale

Interactions in EAS: Acceptance and Extrapolations

⇒ Reduce uncertainties in interaction models with accelerator data

Center-of-mass-energy

LHC, Central measurements plus forward region

- Phase-space
 - Nuclear Effects

LHC: compare p-p, Pb-p and e.g. p-O

• high-x_F

Fixed Target Experiments at SPS, but also with LHC beam

Definition of Acceptance at LHC

- Pseudorapidity, η
 - $\eta = -0.5\log an (heta/2)$,

where θ is the angle w.r.t. z-axis, which is beam direction

• Magnetic Deflection and $\rho_{\rm T}$

Tracking: $p_{\rm T} > 100 \, {\rm MeV}$ Calorimetry: $p_{\rm T} > 1 \, {\rm GeV}$

Pseudorapidity Densities After Tuning to LHC (7TeV)

Very good description of (central) data

Multiplicities After Tuning to LHC (7TeV)

- Average better described
- Still differences in the shape
- Modelling of tail much better

Hadronic Cross Sections up to 7 TeV

S. Ostapchenko, ISVHECRI 2014

Proton-Air Cross Section is one of the most important quantities for air shower modeling

Proton-Proton \rightarrow Proton-Air, With Tevatron Data

Nucl.Phys.Proc.Suppl. 196 (2009) 335

Proton-Proton \rightarrow Proton-Air, With LHC Data

Large Hadron Collider and Experiments

Large Hadron Collider and Experiment Acceptances

Relevance for Extensive Air Showers

- Central ($|\eta| < 1$)
- Endcap $(1 < |\eta| < 3.5)$
- Forward (3 < $|\eta|$ < 5), HF
- CASTOR+T2 (5 < $|\eta|$ < 6.6)
- FSC ($6.6 < |\eta| < 8$)
- ZDC ($|\eta| > 8$), LHCf
- How relevant are specific detectors at LHC for air showers?
- \rightarrow Simulate parts of shower individually.

Lateral Particle Density on Ground Level

Muon Density

Air shower models so far only tuned to about 10 % !
Forward detectors are crucial.

Particle Densities at 1000 m From Shower Core

Density at 1000m

Longitudinal Shower Development

Electron Profile

Air shower models so far only tuned to about 10 % !
Forward detectors are crucial.

LHC Forward Detectors

ТОТЕМ

- TOTEM: Very forward particle production and elastic
- LHCf: Very forward photon, π^0 , neutrons
- CASTOR: Very forward energy, diffraction

Maximal Acceptance: CMS+TOTEM at 8TeV

- New collaboration between CMS+TOTEM
- Models better in the center are worse forward, and vice versa
- QGSJetII.4 describes these data best

TOTEM/T2 + CMS/CASTOR

Particle Reconstruction

Jets, leptons and resonances at η up to 6.6

Energy in Very Forward Direction: CMS/CASTOR

JHEP 1304 (2013) 072

- Unique measurement at very forward phase-space
- Discrepancies become large for higher energies
- 13 TeV data will be very interesting to get

Zero Degree Calorimeters: LHCf

More: Nobuyuki Sakurai, this conference Here: results shown at ISVHECRI 2014

- Unique Collaboration/Experiment
- Very good phase-space to constrain cosmic-ray models
- Only caveat: limited to neutrals

Nuclear Effects, Lead-Lead Collisions

• Lead-Lead provides extreme scenario, however, peripheral collisions can be compared to the collision of light nuclei

• No model performs equally well going from very central to peripheral PbPb collisions

Nuclear Effects in the Cross Section (Proton-Lead)

- Test of Glauber Model (pp and pPb) at LHC
- Standard Glauber Model performs well
- QGSJetII.4 slighlty too high

Fixed Target with LHC Beam

Bent crystal, UA9:

e.g. PRL 87 (2001) 094802

A Fixed Target ExpeRiment at LHC (AFTER@LHC)

arXiv/hep-ph 1207.3507

- Precision QCD
- W/Z studies,
- Quarkonia physics
- Cosmic Rays, Neutrino/Muon Production

First steps

1st AFTER-week at CERN Nov/2014

 $\begin{array}{l} \Rightarrow \mbox{ Major impact of LHC data on cosmic ray models} \\ \Rightarrow \mbox{ Expect more from 13TeV collisions in 2015} \\ \Rightarrow \mbox{ Phase-space for tuning not yet fully exploited} \end{array}$

Additional Material

Particle Production in low- p_T Mini-Jets

• Main origin of particle production in air showers

 Information on the multiple-scattering nature of collisions

• Cosmic ray models describe data better than e.g. PYTHIA

Nuclear Effects in Proton-Lead Collisions

- Proton-Lead is a closer to the CR-Air system as compared to Lead-Lead
- EPOS performs very well for central collisions at central rapidity
- Results with identified particles provide additional information

Proton-Oxygen Data at LHC: Very Relevant

- Asymmetric heavy-ion run with proton-oxygen nuclei
- After LS1, $\sqrt{s_{\mathrm{NN}}^{\mathrm{pO}}} = 10 \ TeV$ (Proton beam at 7 TeV)
- Oxygen very close to atmospheric material of extensive air shower production (nitrogen)
- Impact on model predictions :

Cosmic Rays also add Information:

- Measure cross sections in extensive air showers from fluctuations (57 TeV)
- Measure muon content
- Cosmic Ray data constrains particle production over wide ranges of energies, including accelerators
- Exotic shower profiles can provide information on elasticity, diffraction, ...

Auger: Phys. Rev. Lett. 109, 062002 (2012)

Sensitivity to Interaction Physics

- Wide range of energies, reaching beyond accelerators
- Uncertainty: extrapolation of hadronic interactions
 - Phase space (!)
 - Energy

\rightarrow Very different impact on different EAS observables:

 X_{\max} Very high energy interactions Muons Low energy interactions

(Forward) ρ^0 Production, QGSJetII.3 \rightarrow QGSJetII.4

Charge Exchange, Leading π^0/ρ^0 production:

Impact on Muons in Air Showers

Systematically change the leading π^0/ρ^0 ratio in CONEX:

(SIBYLL, proton, 10^{19.5} eV)

(f19 is the scaling factor for ratio at $10^{19} eV$, logarithmic energy dependence)

Ulrich, Engel, Baus, ISVHECRI 2014

Forward ρ^0 production, QGSJetII.4

Prediction of inclusive athmospheric muon fluxes as a test of hadronic interaction models

A.V. Lukyashin, ISVHECRI 2014

 \Rightarrow Too many ρ^0 produced now?

Correlations between Average and RMS

- All models compatible with a changing mass composition as a function of energy
- Some tension of a few models with the data

EAS and Model Tuning (LHC at 7 TeV)

Caveats / Potential:

- Only central rapidities $|\eta| < 2$
- Not highest possible center-of-mass energies
- Mainly proton-proton data

Other Observables: Fluctuations

Caveats:

- Very different compared to $\langle X_{
 m max}
 angle$
- LHC tuning did improve the high energy end, but worsened the agreement at lower/medium energies

Muon Content at Ground Level

Auger, arXiv-1408.1421 [atro-ph]

- More muons in air shower data than expected
- No consistency between different observables can be achieved
- \rightarrow Likely cause: interaction physics in air showers models is not accurate

Acceptance for Charm Production at LHC

LHCb: \approx 7 % of total production observed