Antarctic Neutrino Detection Experiments Utilizing The Askaryan Effect In-Ice, Which Begin And End With The Letter "A" And Have Either 2 or 3 Syllables (but definitely not more than 3)

- ANITA (balloon)
- ARA (South Pole)

ANITA/ARA science

- Primary mission: "GZK neutrinos" caused by photoproduction of UHECR on CMB: $\gamma N \rightarrow \Delta \rightarrow \pi X \rightarrow \nu X$
 - 2013 Observation by IceCube of first UHE nonatmospheric neutrinos (~PeV)!
 - Sub-GZK, but perhaps there is a high-energy tail that extends into ANITA sensitive energy range?
- Detection scheme: Coherent RF emitted by shower from vN → lN'+shower in-ice collisions.
- Cylindrical shower has dimensions ~10 meters in length; ~20 cm in diameter; Cherenkov radiation coherent down to lambda~20 cm
 - Strategy pioneered by RICE experiment (1996-2012)
 - Signal verified in two SLAC testbeam experiments

ANITA/ARA concept

Figure 2: Schematic of the ARA Testbed station.

ANITA/ARA +/-

- + Advantages of the ANITA strategy relative to in-ice:
- Huge, RF-transparent target volume
- Triggering near thermal floor in RF quiet environment
- In-air receivers allow pre-flight calibration
 - Sub-degree resolution in both θ and ϕ
 - Better polarization separation for in-air (or on-surface, a la' ARIANNA)

Disadvantages:

- Poor depth perception (i.e., cannot tell if an event originated on the surface or sub-surface)
 - But have several handles on neutrino events, nonetheless!
- Typical distance-to-interaction point is ~100 km
 - Neutrino must be energetic enough to produce detectable pulse!
 - Threshold ~ 10,000 PeV (10 EeV)
- 35 day livetime

ANITA Flight History

- 2004: ANITA-Lite flies 2-chs. Piggyback on TIGER
 - Full verification of DAQ, backgrounds!
- 12/06–1/07: ANITA-1 = First full mission
- 12/08-1/09: ANITA-2 = ANITA-1 + lots of 10-30% improvements to give overall doubling sensitivity!
- 12/14: ANITA-3 = ANITA-2 + significant changes to DAQ, triggering, hardware – targets UHECR detection & extends low- frequency reach
- 12/16: ANITA-4=final ANITA flight; ~ANITA-3

Published Science Results

- Best limits on neutrino flux for E>10¹⁹ eV +
 - Radioglaciolgy: First direct (i.e., time-domain)
 measurement of crystalline ice Ih birefringence
 - UL on fluxes of ultra-relativistic monopoles
 - GRB neutrinos
 - Lorentz invariance
 - Surface roughness probed by measuring surface albedo @ λ -1m
 - Unexpectedly, demonstration of ANITA as a charged UHECR detector via radio emissions!
 - 20 Hpol-dominant events via "geomagnetic + Askaryan" radiation
 - Unique to ANITA triggering at frequencies >200 MHz

Radio Air Shower Energy Measurements

- Two effects:
 - $\mathbf{v} \times \mathbf{B}_{earth}$ (uniform polarization, \mathbf{E} transverse to \mathbf{B}_{earth})
 - Askaryan in-air: radial E
 - (i.e., transverse at all points to Circular Cherenkov ring)

Radio Cherenkov ring (θ_c ~1 degree!)

Signal on the ground

ANITA-2 → ANITA-3

- Improve sensitivity to RF from UHECR EAS
 - Restore Hpol triggers that were dropped in ANITA2 before we realized ANITA was a UHECR detector!
 - Real time, event-by-event interferometry using 3bit waveforms lowers trigger threshold to ~2.5 SNR
 - Demonstrated performance @ 300 Hz
 - Add cylindrical Hpol Rx with sensitivity down to 80 MHz to bridge low → high frequency understanding of radio emissions from air showers
 - UNIQUE feature of ANITA-continuous coverage over "coherent" → "partially coherent" radio-frequency regime

Hpol low-frequency antenna hangs under gondola

ANITA-3 UHECR

- Expect to see ~10 UHECR per day via radio emissions
 - -Threshold ~1 EeV
 - -mean observed energy ~30 EeV
 - Modest improvement w/ ANITA-4
- Excellent UHE aperture!
 - May observe GZK cutoff!

Improving UHECR energy estimate

AUGER/TA: redundant energy measurements!!

- ANITA only handle via radio; strategy for reducing energy sys error:
 - lowering sensitivity into "well-modeled" f<200 MHz regime with dedicated Hpol cylinder antenna
 - Dedicated testbeam (T-510) just completed to quantify geomagnetic/Askaryan signals
 - More precise measurements of surface reflectivity/roughness over ANITA passband

Refining A1 UHECR energy-estimates

Procedure: Model CoREAS/ZHSAires prescribes $\Delta\theta_c$ as f(observed) pwer spctrum Knowing $\Delta\theta_c$, and msrd signal amplitude=>infer **UHECR** energy

SLAC T-510: Spring, 2014 (data analysis in progress)

End Station A

Cherenkov Cone Askaryan "Geo" Magnetic

Calibrating surface roughness via stereoscopic photos

FIG. 1: Antarctic topography along Vostok route (I)

FIG. 2: Antarctic topography along Vostok route (II)

FIG. 3: Antarctic topography along Vostok route (III)

1/14 Data taken by AARI, St. Petersburg – reconstruction of point-clouds in progress

Calibrating surface roughness via Solar albedo

Agreement with Fresnel Coefficients as f(incidence angle)

Lines=
Fresnel H(top)
& V-Pol
(bottom)

More precise surface reflectivity probe

- 12/14: ANITA HiCal: Pathfinder class balloon, to be launched within hours of main ANITA-3 launch
 - Tx emits both direct + surface-reflected signal
- to fly within 200 km of ANITA for at least one hour
- Hardware:
 - "custom" transmitter that mimics EAS spectrum (ignition coil or piezo sparker [\$10 @ Walmart) fed into a RICEtype dipole antenna

HiCal sparker at 5 mB

Simulated HiCal signal at r=200 km

Interferogram

A3+ A4 Science

Neutrino sensitivity

- ANITA-3+4: assume 50+50 days(x3 over ANITA-2)
- Factor of ~30% in trigger threshold, 20% in antenna area, better reconstruction & EMI control
- Net gain x3-5 in event rate
- Total improvement:
 ~1 order of
 magnitude

Next big thing is...

+ hundreds of UHECR!

EVA: The balloon is the antenna

incoming plane

-6 to -13 degrees below horizontal

2014 ARA neutrino detection efficiency (3 analyses)

Plateau
efficiency~40%;
at high SNR, lose
efficiency by, e.g.,
requiring that
electronics are
not saturated

ARA source reconstruction – 3 complementary techniques – resolution ~0.5° to neutrino interaction point

Coherently Summed Waveform and template-based analysis (latter: independent MC simulation!)

ARA result

Summary

- ANITA-3 will fly in December, with major hardware improvements over ANITA-2; HiCal to follow
- In addition to enhanced neutrino sensitivity, effort to maximize UHECR sensitivity AND reduce systematic errors on UHECR energy estimate
 - Target 25% overall energy error
- ANITA-4 has just been approved for 2016-17 flight.
- ARA currently = testbed + 3 "deep" stations. ARA-2 & ARA-3 neutrino limit en route within the next couple of months.
- But, future uncertain. No funding for two years, and no more deployment until 2015-16 (at the earliest).

Emission of radio signals from air showers

- Coherent at MHz frequency
- two main emission mechanisms:

1. Geomagnetic emission

Deflection of e and e in Earth's magnetic field

→ time dependent transverse current, linearly polarised $\vec{E} \propto \vec{v} \times \vec{B}$

Askaryan effect

Time variation of net charge excess

→ linearly polarised, E radial oriented around shower axis

Same mechanism as in-ice, But larger size=>coherence @lower frequencies

