Composition Working Group Report

R. Abbasi, J. Bellido, J. Belz, V. de Souza, W. Hanlon, D. Ikeda, J.P. Lundquist, P. Sokolsky, T. Stroman, Y.Tameda, Y. Tsunesada, M. Unger, A. Yushkov, for the TA and Auger Collaborations

UHECR2014 15 October 2014

Outline

- recap UHECR2012
- ad hoc mix analysis
- future plans

UHECR2012

- Composition W.G. formed to address "inconsistency" between Auger, HiRes, TA compositions.
- Outline differences between approaches
- Cross-checks
- Evaluating differences in the light of different hadronic models.
- Report published:

EPJ Web Conf. 53 (2013) 01006

Different Approaches: Auger

 Limited field-of-view (FOV) of fluorescence detectors (FDs) introduces geometry-dependent detector bias.

Auger Approach:

- Select showers with geometries that will allow X_{max} to be inside a detector FOV that is "wide enough" to cover the full X_{max} distribution.
- Infer moments of unbiased X_{max} distribution
- Can be compared directly to simulations at generator-level

 X_{max} versus minimum observable X for the particular event geometry. 18.0 < log(E(eV)) < 18.2

Different Approaches: HiRes/TA

 Limited field-of-view (FOV) of fluorescence detectors (FDs) introduces geometry-dependent detector bias.

HiRes/TA Approach:

- Simulate X_{max} biases with detailed detector Monte Carlo.
- Compare measured X_{max}
 distributions with MC
 predictions including effects of detector biases.
- Identical cuts for data and Monte Carlo.
- Not directly comparable to other experiments.

Difference in X_{max} as measured by the two HiRes detectors: Monte Carlo (histogram) and data (points).

Cross Checks

Fig. 8. The $\langle X_{\text{max}} \rangle$ and $\langle X_{\text{max}}^{\text{meas}} \rangle$ for Auger and HiRes using showers from different zenith angle ranges.

Different Hadronic Models

Fig. 11. Comparing the average composition ($\langle lnA \rangle$) estimated using Auger, HiRes , TA and Yakutsk data. The shaded regions correspond to the systematic uncertainty ranges. To infer the average composition from $\langle X_{\text{max}} \rangle$, QGSJet-II and SIBYLL models have been used.

ad hoc Mix Analysis (begun ICRC2013)

- Use X_{max} distribution as reported by Auger
 - use *ad hoc* fraction mix of H, He, N, Fe primary nuclei to ensemble Auger X_{max} distributions.
 - QGSJETII-03 only (computing time)
 - Roughly reproduces Auger $\langle X_{max} \rangle$ and $\sigma(X_{max})$ (above)
- Process through TA detector simulation, reconstruction, selection
- Is TA detector & analysis sensitive to similar composition change?

QGSJETII-03 Mix Fractions

Mix Comparison (BR/LR)

TA "Parent" Mix <Xmax>, with Auger data

Mix Comparison (BR/LR)

Auger Mix Observed with TA Hybrid Analysis (Black Rock/Long Ridge)

- 5 year TA BR/LR hybrid data should distinguish mix from QGSJETII-03 protons in $< X_{max} >$
- 5 year TA BR/LR has less statistical power in $\sigma(X_{max})$.

Future: Direct Comparison of TA/Auger Data

- "The observed agreement between the measured $\langle X_{max} \rangle$ and $\langle X_{max} \rangle$ is not expected." (2012 working group report).
- Is agreement
 - Coincidental; *i.e.* experiments are actually observing different X_{max} distributions?
 - Real, i.e. tthe observed distributions are the same and differences lie in comparison to shower models?
- Either way, a definitive answer would be a significant statement.

Figure 2 of UHECR2012 C.W.G. Report (Yakutsk points removed.)

Summary

- W.G. studying response of TA detector to Auger X_{max} distribution; evaluate agreement between two results.
- Planning joint paper on mixture via "Middle Drum" Fluorescence Detector and mixture ~few months
- Future of working group: data-data comparison?

Backup

TA BR/LR Analysis:

- All work done based on Auger ad hoc mixture fit to QGSJet II-03 hadronic model.
- We have generated ~4 year (20080527 20120219) QGSJet II-03 MC for proton, helium, nitrogen, and iron.
 - Thrown using HiRes I/HiResII combined monocular spectrum.
 - Mixed according to Auger QGSJet II-03 recipe.
- Thrown mix: 74 million events between 10^{17.5} and 10²⁰ eV.
- Reconstruction of mix via standard BR/LR hybrid analysis suite.
- Analysis cuts (events accepted if they meet the following criteria):
 - \circ $\log_{10}(E) > 18.2 \text{ eV}$
 - zenith angle < 55 degrees
 - geometry chi² < 5
 - o profile chi^2 < 10
 - \circ X_{max} bracketed
 - # good tubes > 11
 - track length > 10 degrees
 - psi angle < 130 degrees
 - time extent > 7 usec
 - core falls within the SD array
- No extra weather cuts applied